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Abstract

When autonomous agents interact in the same environment, they must often cooperate
to achieve their goals. One way for agents to cooperate effectively is to form a team,
make a binding agreement on a joint plan, and execute it. However, when agents are
self-interested, the gains from team formation must be allocated appropriately to incen-
tivize agreement. Various approaches for multi-agent negotiation have been proposed,
but typically only work for particular negotiation protocols. More general methods
usually require human input or domain-specific data, and so do not scale. To address
this, we propose a framework for training agents to negotiate and form teams using
deep reinforcement learning. Importantly, our method makes no assumptions about the
specific negotiation protocol, and is instead completely experience driven. We evaluate
our approach on both non-spatial and spatially extended team-formation negotiation
environments, demonstrating that our agents beat hand-crafted bots and reach nego-
tiation outcomes consistent with fair solutions predicted by cooperative game theory.
Additionally, we investigate how the physical location of agents influences negotiation
outcomes.

1. Introduction and Related Work
The ability of humans to cooperate with one another at scale is crucial to our suc-

cess as a species [BG03, RN13, Har14, Hen17]. We are capable of cooperating with
others even when we have somewhat different preferences or when our incentives are
only partially aligned [JJ89, KP95]. Many tasks we face are only efficiently accom-
plished by a team, ranging from scoring points in a basketball game, through manufac-
turing products on an assembly line to building successful companies.

Similarly, multiple artificial agents inhabiting the same environment affect each
other, and may gain by coordinating their actions. Indeed, many tasks are effectively
intractable for any single agent, and require a team of collaborators. Examples include
search and rescue [KTN+99], multi-robot patrolling [AKK08], security [Tam11], man-
aging supply chains [Chr16] and multiplayer first-person video games [JCD+18].

Despite the need to cooperate, stakeholders sometimes have different abilities and
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preferences which affect the chosen course of action. Further, although stakeholders
benefit from cooperation, they might also be in competition with one another, possibly
vying to obtain a larger share of the gains. For instance, founders of companies all
want the company to succeed, but each would also prefer to receive a larger share of
the profit.

Agents must therefore negotiate to form teams that are both fairly aligned with in-
dividual interests and capable of achieving the task at hand. In many settings agents
have a choice of partners they can work with. For example, there may be multiple sup-
pliers providing goods required to make an end product, or multiple potential partners
to share data with. Hence, agents must reason about who to join forces with to solve a
task, and how to split the gains.

This problem can characterized as a team-formation negotiation problem as fol-
lows [Kra97, SK98]. By definition, no single agent can perform the task on their own,
but there may be several teams of agents who are capable of doing so, so each agent
must decide who to collaborate with. The reward for accomplishing the task is awarded
to the first team that solves it. 1 Hence, agents interact with one another to simultane-
ously form a team and agree on how to share the joint reward. To solve this abstract
problem, one must provide a concrete environment where agents can negotiate and
reach an agreement; We must specify a negotiation protocol that encodes the allowed
negotiation actions and determines the agreement reached [RZ94].

Team-formation negotiation tasks are natural objects of study in game theory. More
precisely, cooperative game theory focuses on interactions between agents who form
teams and make enforceable agreements about outcomes [Bra07, CEW11]. 2 Weighted
voting games are an archetypal problem, in which every agent has a weight and a team
of agents is successful if the sum of the weights of its participants exceeds a fixed
threshold [BI64, Hol82]. Weighted voting games also offer a simple model of coalition
formation in legislative bodies [Lee02, FM+98].

Cooperative game theory: seeks to predict the agreements negotiated by agents
in such settings, proposing several solution concepts. Some solutions, such as the
core, bargaining set and nucleolus [Aum61, AM61, Sch69, AH92], have focused on
identifying stable agreements. Other solutions, known as power indices, have tried to
measure the objective negotiation position of agents, quantifying their relative ability
to affect the outcome of the game, or the fair share of the joint reward they should
receive [CEW11]. The most prominent of these is the Shapley value [Sha53b] which
has been widely studied for weighted voting games [SS54, Str88]. In particular, it has
been used to estimate political power [Lee02, FM+98, ABEP11, ZFBE12]. 3

1We take a cooperative game approach with binding contracts, rather than examining deviations by agent
subsets as done in previous work on strong equilibria or strong Price of Anarchy [Mas78, HLY97, AFM09,
BSTV14].

2This setting is akin to ad hoc teamwork [SKKR10], except it has an initial phase where agents negotiate
before solving the problem together, and make binding agreements about sharing a joint reward.

3Cooperative game theory has also been applied to analyze many other forms of multi-agent interac-
tions (see recent textbooks for a complete survey [CEW11]), including analyzing negotiation power [KP89,
ABH10, MBR10, ABK+11, BPR13, PST14], finding key contributors in joint tasks [CS04, IS05, BGK+12,
BMFT12, HGB16, BBL+19], analyzing collusion in auctions [MZ91, BZK11, Bac10, vdB12, LPBR13],
identifying critical components in communication or transportation networks [SDHM07, BRP08, ALPS09,
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The relation between the Shapley value and Nash equilibria: Cooperative game
theory only considers the value each subset of agents can achieve, and abstracts away
many details regarding the specific actions and negotiation protocols agents may use.
Such finer-grained analysis can theoretically be achieved by applying non-cooperative
game theory, and in particular the Nash equilibrium. Researchers have already noted
several connections between the Shapley value and the core and competitive equilib-
ria or Nash equilibria in restricted bargaining and market settings or corporate struc-
tures [Gul89, Zwi95]. When a certain class of competitive markets is modelled as a
multiplayer game, the Shapley value converges to a competitive equilibrium when the
set of traders is expanded homogeneously [Sha64]. Further, in markets where each
trader only holds a negligible fraction of the resources of the economy (modelled as
a game with a continuum of traders), the allocations given by the Shapley value are
the same as those obtained under competitive equilibrium [Aum75, AS15]. Addition-
ally, results on the existence of a competitive Walrasian equilibria can be derived from
Nash’s theorem about the existence of Nash equilibria by applying a cooperative game
analysis on Shapley and Shubik’s trading-post game [DG03]. While these results hold
for various market domains, they do not cover arbitrary negotiation settings. 4 A
key question is thus whether learning under a specific negotiation protocols, typically
modelled as a non-cooperative game and analyzed through Nash equilibria, is likely to
result in outcomes similar to those predicted by cooperative game theory.

Constructing a Negotiation Agent by Reinforcement Learning: Pragmatically
speaking, using a multi-agent prism, how should one construct a negotiating agent that
maximizes the reward obtained? Many researchers have borrowed ideas from cooper-
ative game theory to hand-craft bots [ZR89, APS04, IHK07, BKG11], often requiring
additional human data [Oli96, LK10]. Such bots are tailored to specific negotiation
protocols, so modifying the protocol or switching to a different protocol requires man-
ually re-writing the bot [JFL+01, ALIZ10]. As a result, algorithms based purely on
cooperative game theory are neither generally applicable nor scalable.

Moreover, negotiation and team formation in the real world is significantly more
complex than in the game theoretic setting, for several reasons: (1) negotiation pro-
tocols can be arbitrarily complicated and are rarely fixed; (2) enacting a negotiation
requires a temporally extended policy; (3) the idiosyncrasies of the environment af-
fect the negotiation mechanics; (4) Players must make decisions based on incomplete
information about others’ policies.

1.1. Our Contribution
We propose using multi-agent reinforcement learning (RL) as a paradigm for nego-

tiating team formation, which can be applied to arbitrary negotiation protocols in com-
plex environments. Here, individual agents must learn how to solve team formation
tasks based on their experiences interacting with others, rather than via hand-crafted
algorithms. Our RL approach is automatically applicable to Markov games [Sha53a,

RBMR09, BR09, BP10], characterizing electricity and power systems [ANHMIH20] and even analyzing
workloads in cloud computing or Bitcoin mining [BBK14, LBS+15] and car-pooling [LFR+16].

4We also analyze the relation between the Shapley value and the Nash equilibrium in the negotiation
environments we propose, see Section 4.6.
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Lit94], which are temporally and spatially extended, similar to recent work in the non-
cooperative case [LZL+17, LP17, FCA+17]. As such, our method falls in the very
broad category of multi-agent simulation based methods [NM09, UW09, KB15] (see
various textbooks for a general introduction to multi-agent based simulation [FW99,
Woo09]). 5 In contrast to earlier work on multi-agent RL in non-cooperative games,
the key novelty of our work is comparing the behaviour of negotiating RL agents with
solutions from cooperative game theory.

Some previous work in multi-agent (deep) reinforcement learning for negotiation
has cast the problem as one of communication, rather than team formation (e.g. [GT11,
LYD+17, CLL+18a, EBL+19, HAE+20]). In particular, the environments considered
involved only two agents, sidestepping the issue of coalition selection. Closer to our
perspective is the work of [CB04, MRC12], which propose a Bayesian reinforcement
learning framework for team formation. However, they do not consider spatially ex-
tended environments and the computational cost of the Bayesian calculation is signifi-
cant.

Evaluation Games: We evaluate our approach using two environments. In the
Propose-Accept game (see Section 3.2.1), each agent has a weight, representing the
proportion of the resources required to achieve a task. Agents have to form a team
whose sum of weights exceeds 100% of the required resources. A successful team
obtains a unit of reward, that needs to be shared between the team members. Agents
take turns making offers to a potential team of partners, proposing an allocation of
the rewards. If the rest of the potential team members accept the proposal, the game
terminates and the team members share the reward according to the proposal; if even
one of the proposed team members declines, the game moves on to the next round
and a proposer is chosen at random. In the Team-Patches game (see Section 3.2.2,
illustrated in Figure 2), agents inhibit a grid world with several colored rectangular
areas called patches. Agents can move in the grid, and form a team with other agents
standing in the same patch. Similarly to the Propose-Accept game, agents each have
a weight, and a team is valid if the sum of the weights exceeds 100% of the required
total weight. Rather than making direct proposals, agents set a demanded share of the
available reward to be a part of the team. The game terminates once there is a patch
where the agents standing on the patch have a valid total weight, and once the total
required share is at most a single unit. In other words, when the total demand of the
team members exceeds the unit reward, agents are still not in agreement on how to
share the reward so negotiation continues.

We show that agents trained via independent reinforcement learning outperform
hand-crafted bots based on game-theoretic principles. We analyze the reward distri-
bution in the Propose-Accept game, showing a high correspondence with the Shapley
value solution from cooperative game theory. We show that the slight deviation is not
due to lack of neural network capacity by training a similar-sized supervised model to

5Some multi-agent simulation approaches attempt to use formal verification to investigate whether the
entire system exhibits desired behavior [FW97, XKMC05], whereas others focus on the relation between
multi-agent simulations and game theoretic solutions [SLB09, VW08, SPG03, LZG+17]. This work falls in
the second category.
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predict the Shapley value. We show that the correspondence with the Shapley value
also holds in the spatial Team-Patches environment, and investigate how spatial pertur-
bations influence agents’ rewards.

2. Preliminaries
2.1. Cooperative Games

We provide definitions from cooperative game theory that our analysis uses (for
a full review see [OR94] and [CEW11]). A (transferable-utility) cooperative game
consists of a set A of n agents, and a characteristic function v : P (A) → R mapping
any subset C ⊆ A of agents to a real value, reflecting the total utility that these agents
can achieve when working together. We refer to a subset of agents C ⊆ A as a team
or coalition. A simple cooperative game has v take values in {0, 1}, where v(C) =
1 iff C can achieve the task, modelling the situation where only certain subsets are
viable teams. In such games we refer to a team X with v(X) = 1 as a winning
team, and a team Y with v(Y ) = 0 as a losing team. Given a winning team C and
an agent a ∈ C, we say that player a is pivotal in a winning coalition C if v(C \
{a}) = 0, i.e. a’s removal from C turns it from winning to losing. An agent is pivotal
in a permutation π of agents if they are pivotal in the set of agents occurring before
them in the permutation union themselves. Formally, let Sπ(i) = {j|π(j) < π(i)}.
Agent i is pivotal in π if they are pivotal for the set Sπ(i) ∪ {i}. The Shapley value
characterizes fair agreements in cooperative games [Sha53b]. It is the only solution
concept fulfilling important fairness axioms, and is therefore an important quantity in
cooperative games [Dub75, DS79, Str88]. The Shapley value measures the proportion
of all permutations in which an agent is pivotal, and is given by the vector φ(v) =
(φ1(v), φ2(v), . . . , φn(v)) where

φi(v) =
1

n!

∑
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))] . (1)

2.1.1. Weighted voting games
Weighted voting games model situations where each agent is endowed with a cer-

tain amount of a resource and a task can only be achieved given a certain quantity of the
resource (called the threshold or quota). Weighted voting games have been extensively
used to analyze power in legislative bodies, where parties each have a certain number
of parliament seats following an election, but a government can only be formed with at
least a quota of half the total number of seats (some countries require an even higher
quota for certain cases).

A weighted voting game [w1, w2, . . . , wn; q] is a simple cooperative game described
by a vector of weights (w1, w2, . . . , wn) and a quota (threshold) q. A coalition C wins
iff its total weight (the sum of the weight of its participants) meets or exceeds the
quota. Formally v(C) = 1 iff

∑
i∈C wi ≥ q. By abuse of notation, we identify the

game description with the characteristic function, writing v = [w1, w2, . . . , wn; q]. The
Shapley value of weighted voting games has been used to analyze political power in
legislative bodies, and for such settings it is referred to as the Shapley-Shubik power
index [SS54].
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2.1.2. The Shapley Value as a Measure of Power in Cooperative Games
We investigate the relation between agreements reached among RL agents and the

Shapley value in a weighted voting game setting. To illustrate and motivate the impor-
tance of the Shapley value and other power indices, we now discuss several example
domains. Consider multiple providers such as travel agencies or airline carriers which
can allow a person to travel between various destinations, and a client who is willing to
pay a certain amount to get to a desired destination; while there is no direct flight to the
client’s destination, there are multiple routing options, using different carrier combi-
nations. How should the carriers share the customer’s payment? Similarly, consider a
manufacturing scenario where multiple companies can provide subsets of components
required to manufacture an end product, and where each company has only some of
the components. How should they share the profit from selling the end product?

Both the above scenarios can be captured as a cooperative game. 6 Solution
concepts from cooperative game theory can analyze such domains, and make pre-
dictions regarding how agents are likely to share the joint gains. However, the most
prominent example for applying cooperative game theory to analyze the negotiation
power of agents originates from measuring political power in decision making bod-
ies [Str88, SS54, FM+98]. We illustrate how power indices, and the Shapley value in
particular, formalize power in a way that depends on the possible teams that can form,
rather than the direct parameters of the game (such as the weights).

Consider the formation of a coalition government following an election, where a
set of political parties each obtained a certain number of parliament seats in an election,
and where a quota of the majority of the seats is required to form a ruling government.
If no single party has won the majority of the votes on its own, multiple parties would
have to join so as to form a ruling coalition government. Parties in this setting would
have to negotiate to form a ruling government. 7

For intuition, consider a parliament of 100 seats, two big parties with 49 seats each
and a small party with 2 seats; a majority requires 50 seats (half of the total number
of seats), so no party can form a government on its own. While each big party has
far more seats than the small party, any team of two or more parties has the required
majority of seats. Under such a framing of the domain, any team of at least two out
the three parties is sufficient for completing the task of forming a government, and due
to this symmetry between parties one may claim they all have equal power. In other
words, what matters in making a party powerful is not its number of parliament seats,
but rather the number of opportunities it has to form teams. Intuitively, one would say
that the small party has a strong negotiation position. It could, for instance, demand
control of a dis-proportionally high part of the budget (i.e. although it only has 2% of
the seats, it is likely to get control of a much larger share of a the budget).

We note that for the above example, the Shapley value would give each party the

6We provide a high level framework where RL agents can learn how to negotiate and form teams. Al-
though our analysis focuses on a weighted voting game setting, our framework generalizes to many cooper-
ative game settings, including ones such as those discussed in these scenarios.

7The election outcomes in some countries, such as the USA or the UK, typically have a single party
obtaining the majority of the votes. However, in many other countries typically no single party has an
outright majority, requiring the formation of a coalition government.

6



same share. In fact, the Shapley value as a function does not even take the weights
or threshold as input, but rather the characteristic function of the game. We say that
agents i, j are equivalent in a game with characteristic function v if for any coalition C
that contains neither i nor j (i.e. any C such that i /∈ C and j /∈ C) we can add either
i or j to the coalition and obtain the same value (i.e. v(C ∪ {i}) = v(C ∪ {j})). We
note that in the above example, all agents are equivalent, and that the Shapley value
allocates them the same share. This is not a coincidence — one of the fairness axioms
characterizing the Shapley value is that equivalent agents get the same share [Sha53b,
Dub75]. Indeed, the Shapley value is the only index fulfilling a small set of fairness
axioms such as this one.

Two additional axioms that fully characterize the Shapley value, in addition to the
above equivalence axiom, are that of giving null players no reward, and the additivity
axiom. A null player is one which adds no value to any coalition, and the null player
axioms states that null players would get no reward; the additivity axioms relates to the
sum of multiple games, stating that the value allocated to any player in the sum-game
would be the sum of the values in the individual composing games. For a more detailed
discussion of such axioms, see textbooks and papers on the axiomatic characterization
of the Shapley value [Str88, CEW11].

2.2. Multi-agent Reinforcement Learning

An n-player Markov game specifies how the state of the an environment changes
as the result of the joint actions of n individuals. The game has a finite set of states
S. The observation function O : S × {1, . . . , n} → Rd specifies each player’s d-
dimensional view of the state space. We write Oi = {oi | s ∈ S, oi = O(s, i)} to
denote the observation space of player i. From each state, players take actions from
the set A1, . . . ,An (one per player). The state changes as a result of the joint action
a1, . . . , an ∈ A1, . . . ,An, according to a stochastic transition function T : S × A1 ×
· · · × An → ∆(S), where ∆(S) denotes the set of probability distributions over S.
Each player receives an individual reward defined as ri : S ×A1 × · · · ×An → R for
player i.

In multi-agent reinforcement learning each agent independently learns, through
its own experience, a behavior policy πi : Oi → ∆(Ai) (denoted π(ai|oi)) based
on its observation oi and reward ri. Each agent’s goal is to maximize a long term
γ-discounted payoff [SB18]. Agents are independent, so the learning is decentral-
ized [BGIZ02].

3. Game Setting
3.1. Overview

We propose a method for training agents to negotiate team formation under a di-
verse set of negotiation protocols. In this setting, many different combinations of agents
can successfully perform a task. This is captured by an underlying cooperative game,
given by a characteristic function v : P (A)→ {0, 1} (which maps viable teamsC ⊆ A
to the value 1, and non-viable teams to 0). When a viable team is formed, it obtains a re-
ward r, to be shared between the team’s individual members. The outcome of the team
formation process is an agreement between agents of a viable team regarding how they
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Figure 1: An overview of our methodology. We examine a team formation task defined by an underlying
cooperative game. Applying different negotiation protocols to the same underlying task generates different
environments (Markov games). Instead of hand-crafting negotiation bots to each such environment, we
train independent RL negotiation agents. We compare the agreements RL agents arrive at to game theoretic
solutions to the underlying cooperative game.

share the reward r (with each agent trying to maximize its share). Cooperative game
theory can characterize how agents would share the joint reward, by applying solution
concepts such as the Shapley value. However, cooperative game theory abstracts away
the mechanism by which agents negotiate. To allow agents to interact, form teams and
reach an agreement regarding sharing the reward, one must use a negotiation protocol,
forming an environment with specific rules governing how agents interact; this envi-
ronment consists of the actions agents can take, and their semantics, determining which
team is formed, and how the reward is shared.

We examine two simple negotiation protocols, a non-spatial environment where
agents take turns making offers and accepting or declining them, and a spatial environ-
ment where agents control their demanded share of the reward in a grid-world setting.
Overlaying the underlying cooperative game with a specific negotiation protocol yields
a negotiation environment; this is a Markov game, which may be analyzed by non-
cooperative game theory, identifying the equilibrium strategies of agents. However,
solving even the simplest such games may be computationally infeasible: even the re-
stricted case of an unrepeated two-player general-sum game is computationally hard
to solve, being PPAD-complete [CD06] (we discuss this issue further in Section 5).
Instead, we propose training independent RL agents in the negotiation environment.
While our methodology can be applied to any cooperative game, our experiments are
based on a weighted voting game as the underlying cooperative game. We examine the
relation between the negotiation outcome that RL agents arrive at and the cooperative
game theoretic solution, as is illustrated in Figure 1.

3.2. Negotiation Environments
Our negotiation environments use a weighted voting game [w1, . . . , wn; q] as the

underlying game, offering a total reward r ∈ N. Each agent i is assigned a weight wi ∈
R at the beginning of each episode, and the goal of the agents is to construct a team
C whose total weight

∑
i∈C wi exceeds a fixed quota q. If a successful team forms,

the entire team is assigned the fixed reward r. The agents comprising the team must
decide how to allocate this reward amongst themselves by agreeing on shares {ri}i∈C
such that

∑
i∈C ri = r, with ri ∈ N0. We say a team C ⊆ A is viable if

∑
i∈C wi ≥

q. Though there are many viable teams, not all teams are viable (depending on the
weights). Only one viable team is chosen, and non-members all get a reward of 0. In
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such settings, agents face opportunities to reach agreements for forming teams, along
with their share of the gains. If they do not agree, they stand the risk that some other
team would form without them (in which case they get no reward); on the other hand,
if they agree to a low share of the reward, they miss out on the opportunity to reach an
agreement with others giving them a potentially higher share.

Our two negotiation environments have an identical underlying game, but employ
different protocols for negotiating over the formed team and reward allocation. The
non-spatial environment uses direct proposals regarding formed teams and reward al-
locations, while our spatial environment has a similar interpretation to that of recent
work applying multi-agent deep reinforcement learning to non-cooperative game the-
ory settings like spatially extended seqential social dilemmas (e.g. [LZL+17, PLZ+17,
HLP+18]).

3.2.1. Propose-Accept (Non-Spatial)
In the Propose-Accept environment, agents take turns in proposing an agreement

and accepting or declining such proposals. The underlying game, consisting of the
weights and threshold, is public knowledge, so all agents are aware of v = [w1, . . . , wn; q]
chosen for the episode. Each turn within the episode, an agent is chosen uniformly at
random to be the proposer. The proposer chooses a viable team and an integer alloca-
tion of the total reward between the agents. The set of actions for the proposer agent
consists of all n-tuples (r1, r2, . . . , rn), where ri ∈ N0 and

∑n
i=1 ri = r. By con-

vention, the selected team C consists of the agents with non-zero reward under this
allocation; that is to say C = {i|ri > 0}.

We refer to the agents in the team chosen by the proposer as the proposees. Once
the proposer has made a proposal, every proposee has to either accept or decline the
proposal. If all proposees accept, the episode terminates, with the rewards being the
ones in the proposed allocation; if one or more of the proposees decline, the entire
proposal is declined. When a proposal is declined, with a fixed probability p a new
round begins (with another proposer chosen uniformly at random), and with probability
1 − p the game terminates with a reward of zero for all agents, in which case we say
the episode terminated with agents failing to reach an agreement.

All proposals consist of a viable team and an allocation (r1, . . . , rn) such that∑n
i=1 ri = r, so the total reward all the agents obtain in each episode, is either ex-

actly r (when some proposal is accepted), or exactly zero (when agents fail to reach
an agreement). Interactions in the Propose-Accept environment can be viewed as a
non-cooperative game, however solving this game for the equilibrium behavior is in-
tractable (see Section 5 for details).

3.2.2. Team Patches (Spatial)
We construct a spatial negotiation environment, based on the same underlying

weighted voting game as in the Propose-Accept environment, called the Team Patches
environment (shown in Figure 2). This is a 15 × 15 grid-world that agent can nav-
igate, including several colored rectangular areas called patches. Agents can form a
team with other agents occupying the same patch, demanding a share of the available
reward to be a part of the team. Similarly to Propose-Accept, the underlying game (i.e.
the agent weights and the quota) are fully observable by all agents. Additionally, as

9



the environment is spatial, agents also observe their spatial surrounding (including the
locations of patches and of other agents).

At the start of an episode, agents are randomly initialized in the center of the map.
Each step, they can move around the environment (forwards, backwards, left, right),
rotate (left, right), and set their demand (di ∈ {1, 2 . . . , r}), indicating the minimal
share of the reward they are willing to take to join the team. To form teams, agents
must move into patches, and we refer to all agents occupying the same patch as the
patch’s team. The team T j in patch j is viable if the total weight of the agents in T j is
greater than the threshold (

∑
i∈T j wi ≥ q). The demands of the patch’s team are valid

if the total demanded is less than the total available (
∑
i∈T j di ≤ r). An agreement

is reached once there is a patch whose team is both viable and with a valid reward
allocation. An episode terminates when an agreement is reached on one of the patches
j, giving each agent i in the team T j their demanded reward (di). Unlike the Propose-
Accept environment, the agents don’t necessarily use up all the reward available, since∑
i di < r is allowed. If the agents fail to reach an agreement after 100 steps, the

episode is terminated, and all agents receive 0 reward. An example for an episode
termination is given in Figure 3 and discussed below.

Figure 2 shows the Team Patches environment for a game with threshold q = 15
and a total reward of r = 7. Agents are represented by the squares containing their
weights. In this example, we have n = 5 agents, with the weights v = [5, 6, 7, 8, 9],
and three patches where agents can form teams (red (left), green (top), and blue (right)).
As shown in the figure, at the start of an episode, the agents randomly begin in the
center of the map with no assigned team or demands.

7

65

8 9

Agent
Demands

5

6

7

8

9

= 0

= 0

= 0

= 0

= 0

Figure 2: The Team Patches Environment, beginning of an episode.

Figure 3 shows an example configuration for the same game as in Figure 2, but at
the end of an episode, where the agents have moved inside the grid-world to each of
the patches. In this example, the agents in red (7 and 8) form a viable team with a valid
reward allocation as their weights are above the required threshold (7 + 8 ≥ 15) and
their demands are equal to the availability (3 + 4 ≤ 7). The team in green is not viable
as the total weight is not sufficient (5 � 15), and the blue team has an invalid reward
allocation as their demands are higher than the availability (4 + 4 � 7). Agents 7 and
8 receive 3 and 4 reward respectively, and the rest of the agents receive 0 reward.
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8 9
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5
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Agent
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= 4

= 3

= 4

= 4

Figure 3: The Team Patches Environment, termination of an episode.

3.3. Learning Agents
We apply independent multi-agent reinforcement learning to train agents to nego-

tiate in the Propose-Accept and Team-Patches environments. The required inputs to
begin the simulations are the parameters of the underlying weighted voting games,
which include the number of agents n, the agents weights w1, . . . , wn and the thresh-
old q for a successful coalition (see Section 2.1.1). We further require the parameters
of the specific environment (Propose-Accept or Team Patches), such as the locations of
the agents patches (for Team Patches) and the number of reward units r (for Propose-
Accept). Finally, the simulation depends on the hyperparameters of the learners (such
as the learning rate α).

We briefly describe the computational experience of training the agents. Our sim-
ulation is based on independent multi-agent reinforcement learning (see various text-
books and surveys providing a detailed discussion of such methods [Lit94, SPG03]).
As discussed in Section 2.2, we maintain multiple independent reinforcement learning
agents, each capturing a policy mapping observations regarding the state of the envi-
ronment to an action to take. In each episode, each of the agents chooses actions based
on their current policy: in every state, agents select actions based on partial observa-
tions of the true world state, each receiving their individual reward. This results in
experience in the form of a trajectory representing a single episode (game) in the envi-
ronment, consisting of the sequence of states the agent has observed, the action taken
in that state, and the reward the agent achieved. Through their individual experiences
interacting with one another in the environment, agents learn an appropriate behavior
policy, using a reinforcement learning algorithm, which updates an agent’s policy given
the experience gathered (the trajectory).

For Propose-Accept, each agent independently learns a policy using SARSA(λ) [ARN94]
with λ = 0.1. We use a function approximator to learn the Q function, reducing the
intractable state space to manageable number of features, and apply a neural network
as our function approximator. The weights of the network are trained with the Adam
optimizer [KB14] to minimize the online temporal difference error. The function ap-
proximator is a multi-layer perceptron with 3 hidden layers, each of size 64.

For Team Patches, which is a spatial environment, we use an advantage actor-critic
algorithm [MBM+16] with the V-trace correction [ESM+18], employing a convolu-
tional neural network followed by a multi-layer perceptron, and learning from 16 par-
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allel copies of the environment with an on-policy algorithm. The neural network uses
a convolutional layer with 6 channels, kernel size 3 and stride 1, followed by a multi-
layer perspective with 2 hidden layers of size 32. The policy and value function heads
are linear layers. Our training setup is analogous to [JCD+18], but using no evolution.

In some of our experiments we compare our RL agents with hand-crafted bots. We
emphasize that our RL agents are trained with one another [Lit94, SPG03], and we
only compare them with hand-crafted bots following training, at which point we freeze
their parameters, stopping them from learning. As a result, they do not learn to exploit
any weaknesses of the bots.

4. Experiments
We now present our four key experimental results. First, we demonstrate that train-

ing reinforcement learning agents to negotiate leads to sensible strategies, outperform-
ing hand-crafted bots designed for such scenarios. Further, we show that our agents
generate negotiation outcomes consistent with fair solutions predicted by cooperative
game theory, in both non-spatial and spatially extended environments. We then investi-
gate how spatial structure can influence negotiation outcomes. Finally, we test whether
the deviations from the game theoretic predictions are due to the representational ca-
pacity of our agents or their learning dynamics.

4.1. Experimental Setup
Our experiments are based on a distribution D over underlying weighted voting

games. We sample games from this distribution, and refer to them as the experiment’s
boards; each board consists of its weights and threshold (vi = [wi1, . . . , w

i
n; qi]). Each

such board has n = 5 agents, a threshold of q = 15, and weights sampled from
a Gaussian distribution wi ∼ N (6, 1), and exclude boards where all players have
identical power.

We partition the boards sampled from the distribution to a train set and a test
set. Agents are trained for 500, 000 games using train set boards and are evaluated
on the test set, requiring them to learn a general strategy for negotiating under different
weights, and to be have to generalize to negotiation situations they have not encoun-
tered during training. We use a train set of 150 unique boards and a test set of k = 50
unique boards.

4.1.1. On the Choice of the Weight Distribution and Convergence
We use a Gaussian distribution as Weighted Voting Games with Gaussian weight

models have been previously investigated in the literature on computational game the-
ory [CEW11, BS13]. We note that the methods we propose here work for any other
weight distribution as well. However, the relative differences in player power, as
measured by the Shapley value, may be quite different in such games. For instance,
in certain distribution we are more likely to encounter outliers in terms of weights
and Shapley values. Some recent work has examined the influence of outliers and
output constraints on the nonlinear and real systems under non-Gaussian noise mod-
els [FNS11, SNPD16, SN16a].

In general, independent multi-agent reinforcement learning may not converge to a
Nash equilibrium in our game. While there are some known convergence results for
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such procedures in two-player zero-sum games [SPG03, BBDS+08, LZG+17], our
game has more than two players and is not zero-sum (for example, in some cases
all agents get no reward and in other cases some agents have positive utility). As
a result, agents may cycle through policies during training, at least for some weight
configurations, in a way that depends on the weight configuration. In addition to the
above methods for dealing with non-Gaussian noise, one could consider alternative
agent learning algorithms, such as Fictitious Play [Bro51, HS02, SA05], variants of
no-regret learning [Bow05] or alternative learning dynamics [CS07].

4.2. Comparison with Hand-Crafted Bots

We compare the negotiation performance of RL agents trained in our framework
with hand-crafted bots. While hand-crafted bots can form excellent negotiators, they
can only be used for a specific negotiation protocol, and some of them require human
data to construct. We note that although negotiation protocols differ across environ-
ments, the essence of the decisions agents face is similar. When agents fail to reach
an agreement they obtain no reward, so agents who almost never reach an agreement
would be bad negotiators. On the other hand, reaching agreement easily by itself does
not make an agent a strong negotiator. For instance, an agent who accepts any offer
is likely to reach agreement easily but perform poorly, as they would take even very
low offers (even when they have a high relative weight and thus a strong negotiation
position).

Although the essence of the task is similar across environments, the observations,
action spaces and semantics of interaction differ considerably across negotiation pro-
tocols. The key advantage of using RL to train negotiation agents is not having to
hand-craft rules relating to the specifics of the negotiation environment. Indeed, as
hand-crafting a bot is a time consuming process, we focused on the simpler propose-
accept environment; creating a hand-crafted bot for the team patches environment is
more difficult, as there are many more decisions to be made (how to find a good patch,
which share to demand, how to respond if the total reward demanded is too high, etc.)

For simplicity, we examine the Propose-Accept protocol where a negotiation bot
faces two kinds of decisions: (1) what offer to put in as a proposer, and (2) which
offers to accept as a proposee. Our simplest baseline is a random bot. As a proposer, it
selects an allowed proposal uniformly at random from the set of all such proposals. As
a proposee it accepts with probability 1

2 and rejects with probability 1
2 . A more sensible

baseline is the weight-proportional bot, which is an adaptation of previously proposed
negotiation agents to the propose-accept protocol [LKWB08, LK10, BHJ+12, MBZ17]
(the propose-accept protocol itself bears some similarity to the negotiation protocols
used in such earlier work on negotiation agents). An even stronger baseline is the
Shapley-proportional bot, which is similar to the weight-proportional bot, but computes
the Shapley values of all the agents (which is computationally tractable only for games
with few agents).

As a proposer, the weight-proportional bot randomly chooses a viable team C
which contains itself from the set of all such teams. It then proposes an allocation
of the reward that is proportional to each the team agents’ weights. Formally, given a
board [(w1, . . . , wn); q], we denote the total weight of a team C by w(C) =

∑
i∈C wi.
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For the team C it chose, the bot uses the target allocation pi = wi

w(C) · r where r is the
fixed total reward. 8

As a proposee, the weight-proportional bot computes its share of the same target
allocation pi = wi

w(C) · r in the proposed team C, and compares it with the amount
ri offered to it in the proposal. We denote by gi = ri − pi the amount by which the
offer ri exceeds pi, the bot’s expectations under the weight-proportional allocation. A
high positive amount gi indicates that the bot is offered much more than it believes
it deserves according to the weight-proportional allocation, while a negative amount
indicates it is offered less than it thinks it deserves (when offered exactly the weight-
proportional share we have gi = 0). The probability of the bot accepting the offer is
σ(c · gi) where σ denotes the logistic function σ(x) = 1

1+e−x , and where c = 5 is a
constant correcting the fact that gi only ranges between−1 and +1 rather than between
−∞ and +∞. Thus the bot accepts a “fair” offer (according to the weight-proportional
target) with probability of 1

2 , and the probability convexly increases as gi increases (and
decreases as gi decreases).

The more sophisticated Shapley-proportional bot follows the same design as the
weight-proportional bot, except it sets the target allocation to be the one proportional
to the Shapley values rather than the weights, i.e. pi = rφi/(

∑
i∈C φi) (where φi

denotes the Shapley value of agent i). We note that as computing the Shapley values
is an NP-hard problem [EGGW09] this method is tractable for 5 agents, but does not
scale to games with many agents.

We compare the performance of the bots and RL trained agents by creating many
co-trained groups of agents. We examine each of the evaluation boards (sampled from
the distribution of Gaussian weigh boards). For each evaluation board, we create t =
200 pairs of agent groups, where in each pair we have one group of n = 5 independent
RL agents (the all-RL group), and one set consisting of 1 bot and 4 independent RL
agents (the single-bot group). Each group is co-trained for m = 500, 000 episodes,
where during training each episode uses a different board from the train set. During the
evaluation step, we let each agent group play 5, 000 games on each evaluation board in
the test set. We repeat the same analysis, each time allowing the bot to play a different
weight in the board (i.e. letting the bot be the agent in the first position, in the second
position and so on).

We investigate the performance of the RL agent from the all-RL group and the bot
from the single-bot group, when playing the same weight on the same evaluation board.
We average the fraction of the total fixed reward achieved by the RL-agent and bot over
the t = 200 group pairs and over the 5, 000 episodes played with each evaluation board,
and examine the difference d between the amount won by the RL-agent and the amount
won by the bot. A positive value for d indicates the RL-agent has a better performance
than the bot, and a negative number shows a higher performance for the bot.

On average (across boards and episodes played on each evaluation board), the RL-
agent outperforms the weight-proportional bot, achieving 0.025 · r more of the total
reward. In the all-RL group, each agent makes on average 0.203 · r, whereas in the

8Our framework’s action space includes only integral reward allocations, so the bot chooses the integral
reward allocation that minimizes the L1 distance to the target allocation.
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one-bot group the bot makes on average 0.178 ·r. In other words, the RL-agent obtains
10% more reward than the bot. We performed a Mann-Whitney-Wilcoxon test, which
shows the difference is significant at the p < 0.005 level. 9

The results are similar for the Shapley-proportional bot, though the performance
gap is smaller, with the Shapley-proportional bot making on average 0.185 · r (the
RL agent outperforms the Shapley-proportional bot at the same statistical significance
level as for the weight-proportional bot). Unsurprisingly, performing a similar analysis
for the random bot, that selects valid actions uniformly at random, we get even more
significant results (p < 0.001).

We have performed an additional experiment, examining the performance of RL
agents against “out-of-distribution” bots. In this experiment, we trained the RL-agents
in the one-bot group with a weight-proportional bot, but used a Shapley-proportional
bot during their evaluation. In other words, the RL agents adapt their policy against
one type of bot, but are measured against another type of bot. This hindrance sightly
lowers the average reward share of RL agents, allowing the bot to gain a slightly larger
reward share of 0.188 · r. However, even in this case the RL-agents outperform the bot
(p < 0.005).

These results indicate that RL agents can outperform some simple heuristic hand-
crafted bots in team formation settings. Our results certainly do not mean that it is
impossible to create well-crafted bots, tailored to a specific negotiation protocol, that
would out-negotiate RL agents. For instance, even for the weight-proportional and
Shapley-proportional bots we can tune the distribution parameter c discussed above,
and possibly improve the negotiation performance. We view our analysis as an indi-
cation that RL-agents make at least somewhat “reasonable” or “sensible” negotiation
decisions. The key advantage of the methodology we propose is its generality and abil-
ity to tackle new negotiation protocols, without relying on hand-crafted solutions. In
other words, our technique offers a way of automatically constructing at least reason-
able negotiators, without requiring fitting a bot to a given negotiation protocol.

4.2.1. Robustness to Agent Architecture and Hyperparameter Choices
We note that training multiple agents through independent reinforcement learning

results in a complex dynamic system, which can be difficult to model. In particular,
all agents change their policy across time, so from the standpoint of each individual
agent, they are facing a non-stationary environment. As a result, our results could be
sensitive to the choices of the initial parameter configuration or the hyperparameters of
the learning procedure, such as the use learning rate, the time discount factor λ or the
optimization method used. The above results contrasting RL agents and bots are ro-
bust to various changes to agent architecture choices and hyperparameter settings. RL
agents outperform the bots, at the same statistical significance, even when perturbing
the learning rate, hidden layer sizes, the allotted number of training rounds and the λ
parameters by ±25%. 10

9The Mann-Whitney-Wilcoxon test is a non-parametric test similar to Student’s T-test, but resistant to
deviations from a Gaussian distribution.

10We emphasize that strong hand-crafted bots may well achieve a better performance for a specific nego-
tiation protocol, at the cost of significant engineering to build the bot. The experiment is designed to show
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Our results above are given for initial architecture and hyper-parameter settings
that we have tried, rather for an architecture or hyperparameters tuned to identify the
best negotiation agents. To tune parameters so as to maximize the negotiation per-
formance of the resulting agents, one may either conduct extensive sweeps, or use
various optimization methods for the neural architecture [ZL16, EMH18] or hyper-
parameters [Ben00, DSH15, MDA15]. Similarly, meta-heuristic and nature inspired
optimization algorithms can also be used to tune parameters in order to improve agent
performance [Yan10, FJYF+13, NPD+14, SN16b, PNS17]

4.3. Consistency with Game-Theoretic Predictions

We now discuss another experiment, investigating whether our RL trained agents
negotiate in a way that is consistent with solution concepts from cooperative game
theory, focusing on the Shapley value. As the Shapley value was proposed as a “fair”
solution, one can view this as studying whether independent-RL agents are likely share
the joint gains from cooperation in a fair manner.

To investigate the negotiation policies of our RL agents, we train and evaluate them
on our two environments using the same set of k = 20 boards. We denote the av-
erage amounts won by weight i on board j as sji , and refer to these as empirical
agent rewards.11 Given the game vj we can compute the Shapley values, denoted
as φ(vj) = (φj1, . . . , φ

j
n). We view φji as the game theoretic prediction of the fair share

the agent with weight wji should get in a negotiation in the game vj . We apply the
analysis to each of our k = 20 boards and obtain k · n pairs {(φji , s

j
i )}i∈[n],j∈[k] of

Shapley value predictions and empirical agent rewards. Figure 4 and Figure 5 show
scatter plots and density estimation contours for these pairs.
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Figure 4: Correspondence between Shapley values and empirical reward shares: Propose-Accept.

the RL agents do a “reasonably good” job at negotiation.
11For Propose-Accept, we average over 200 independent runs of 5000 episodes each, and for Team Patches

we average over 100 independent runs of 1000 episodes each.
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Figure 4 shows the correspondence between agent Shapley values and the empirical
share of the rewards these agents achieved in the Propose-Accept environment (i.e. the
pairs {(φji , s

j
i )}i∈[n],j∈[k]). On the left side of the figure we show a scatter plot, where

the x-axis location of each point relates to the fair share prediction using the Shapley
value, and the y-axis is the empirical reward share of the RL co-trained agents. We
include y = x (black dashed) to show the reward our agents would receive if they
exactly matched the predictions, as well as a trend line (in red). On the right side of
the figure we show the corresponding density-estimation contours, highlighting where
most of the probability mass lies.
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Figure 5: Correspondence between Shapley values and empirical reward shares: Team Patches.

Figure 5 shows the correspondence between agent Shapley values and the empir-
ical share of the rewards these agents in the Team-Patches environment (equivalent
to Figure 4 which analyzed the Propose-Accept environment). Again, the left hand
side shows a scatter plot, and the right hand side shows the corresponding density-
estimation contours.

Our results, depicted in Figure 4 and Figure 5, indicate a strong correlation be-
tween the Shapley value based predictions and the empirical gains of our independent
RL trained negotiator agents. We see that the majority of the mass occurs in close prox-
imity to the line y = x, indicating a good fit between the game theoretic prediction and
the point to which our RL agents converge. RL agents exhibit a stronger deviation
from the game theoretic “fair” reward on the boards where there are players with sig-
nificantly more power or significantly less power than others, i.e. boards where there
is a high inequality in Shapley values. In these boards, “strong” players (according
to the Shapley value) do get a higher share than “weak” players, but not to the extent
predicted; for these rare boards, the empirical allocation of reward achieved by the RL-
agents is more equal than predicted by the Shapley value. Section 4.3.1 examines how
weight and power inequality affect the correspondence between the Shapley value and
the outcomes achieved by RL agents, and Section 4.5 investigates potential reasons for
the deviation from the Shapley value based predictions.

Our results show independent RL negotiation agents empirically achieve rewards
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that are consistent with the outcomes predicted by the Shapley value from cooperative
game theory. Notably, this consistency extends to our spatial negotiation environment
even with its different negotiation protocol and spatial interactions.

4.3.1. The Impact of Weight and Power Inequality on the Correspondence with the
Shapley Value

Section 4.3 discussed the correspondence between the outcomes achieved by RL
agents and the Shapley value from cooperative game theory, indicating that deviations
occur mostly in boards where some agents have a particularly weak or particularly
strong negotiation position, as measured by the Shapley value. The board distribution
D that we have there used ruled-out boards where all agents have identical weights
(resulting in identical power). To better understand the impact of weight inequality
on the agents’ negotiation position, we now extend that analysis, showing that having
a lower weight variance in the board distribution leads to a higher correspondence
between the Shapley value and the empirical gains of RL agents.

We examine an alternative board distribution, D′, which does not rule-out equal-
weight boards (the remaining weight sampling procedure was identical to the original
distribution D). We generated a new train set and test set of boards from D′. The
sampled weights under D had a standard deviation of STDD = 1.65 whereas the
standard deviation of weights under D′ was STDD′ = 1.1. We repeated the analysis
of Section 4.3 for these reduced variance boards, resulting in Figure 6.
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Figure 6: Shapley Correspondence on Boards With Reduced Variance (Propose-Accept Environment).

Figure 6 shows that the mass is much more concentrated around the area with equal
Shapley values (points with x ≈ 0.2), where the outcome achieved by RL agents is also
very close to the same value (i.e. y ≈ 0.2). As the Figure shows, this results in having a
stronger correspondence between the outcome obtained by RL agents and the Shapley
value. In other words, high inequality in agent power (negotiation position) results in a
larger discrepancy between the Shapley value and outcomes that RL agents arrive at.
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4.4. Influence of spatial perturbations
As the Team Patches environment is a spatial one, we can examine how spatial

aspects, that are abstracted away in the underlying cooperative game, affect negotiation
outcomes. How does changing the spatial structure of the environment influence the
“power” of agents? Can we reduce the share of the total reward received by the “most
powerful” agent (with the highest weight)? We note that such factors are not taken into
account in the underlying cooperative game, which only considers which agent teams
are successful, as captured by the weights in the underlying game.

Our spatial Team Patches environment is a 15 × 15 grid-world where each entity
has an assigned color. The agents observe this world from their own perspective, as
shown in Figure 7(a), and also observe the weights and demands of every other agent,
as well as their own index. We consider two patches and vary the starting position
of the maximal weight agent. We measure how the agent’s share of the total reward
changes as we incrementally change its starting position from directly touching a patch
to being far away from the average patch location, while every other agent always
starts relatively close to the nearest patch. More precisely, we change the original
Team-Patches configuration in two ways:

1. We set the total number of patches in the world to 2 (red and blue).
2. We modify the starting position of the agent with the highest weight, investigat-

ing how this spatial perturbation influences their share of the total reward.

In Figure 7(b) we visualize this with a full view of the environment where the white
agent is moved between squares 0 and 10, corresponding to being N steps away from
the nearest patch in L1 distance.

(a) Example agent visual observation, from the perspec-
tive of the white agent (centered).
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(b) Visualization at the start of an episode for the spatial
perturbations experiment.

Figure 7: Team Patches – (a) Example RGB observation an agent receives in an episode. The white square
is the observing agent (centered). Other agents are observed as maroon, cyan, purple, and navy, patches as
red, green, and blue, and the environment’s border is observed as gray. In addition to these observations,
the agent also receives its index as a one-hot vector of size number of players, the weights of all agents, and
their current demands. (b) Visualization of spatial perturbations where the agent with the highest weight is
initialized at 0 to N squares from the nearest patch.

Figure 8 shows how the average share of the total reward of an agent changes as its
starting position changes from being close to a patch and far from a patch (contrasting
the outcome with that reached in the original, unperturbed, configuration).
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Figure 8: Influence of spatial changes (perturbed, blue) versus no changes (unperturbed, red) on the highest-
weighted agent’s reward.

As Figure 8 shows, when the highest-weight agent is closer to the patch than the
other agents, it can start negotiating a team earlier, and due to its high weight it can
demand a high reward. However, as we move the agent further away, it takes longer
for the agent to reach a patch, so the other (weaker) agents have more time to form a
team; thus, its share of the reward significantly drops. 12

The results of the above experiment highlight how an RL based simulation can
allow us to investigate the impact of spatial factors that are abstracted away in the
underlying cooperative game. Specifically, this experiment shows that giving agents
ample time to negotiate gives them a negotiation edge over the competition.

4.5. Why do RL Agents Deviate From the Shapley Value?

Section 4.3 shows that while for most boards our RL agents do indeed converge
to an outcome that approximates the Shapley value, there is a deviation on boards
where some players have particularly strong or particularly weak negotiation positions
(Shapley values). Multiple factors may contribute to this. One potential factor relates
to the representational capacity of the RL agents; computing the Shapley value in a
weighted voting game is an NP-hard problem [EGGW09], so perhaps such a function
cannot be easily induced with a neural network. Even if a neural network can compute
the negotiation position in the underlying weighted voting game, we may still have an
optimization error; RL agents optimize for their individual reward when negotiating
under a specific protocol, and it might be difficult to express a policy exactly fitting
the Shapley value in the negotiation protocols we’ve selected. Finally, the deviation

12These results also hold when shortening the number of timesteps in the episode, which effectively gives
the agents less time to negotiation, hence making negotiation more difficult.
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might be caused by the learning dynamics of independent RL agents; the highly non-
stationary environment induced by agents learning at the same time may lead agents to
agreements deviating from the cooperative game theoretic predictions.

We show that a neural network can approximate the Shapley value under super-
vised learning (i.e. when it does not need to consider the environment resulting from a
specific negotiation protocol). We train a model to take the parameters of a weighted
voting game (i.e. agent weights and the threshold), and output the Shapley values
of each player. We generate 3, 000 unique boards from the same distribution with
Gaussian weights used for the experiments in Section 4.3, and apply a train/test par-
tition (80%/20% of the data). We then fit a simple 3-layer MLP with 20 hidden units
(smaller than used in the RL agents), minimizing the mean-squared error loss between
the model’s predictions and the Shapley values. The results of this are shown in Fig-
ure 9.

Figure 9: Prediction of the Shapley values from the game weights and threshold using supervised learning.

We find that the MLP generalizes to unseen boards, and better matches the game
theoretic predictions of the Shapley value.

4.5.1. Letting Agents Observe their Negotiation Position
In the discussion above, we suggested several potential reasons for the empirical

gains of our RL agents deviating from the Shapley value. As Figure 9 indicates, given
a direct supervision signal (boards labeled with the Shapley values), a small neural net
can approximate the Shapley value very well. Our RL agents have a more challenging
task for two reasons: (1) They have to take into account not only their negotiating
position but also protocol details. (2) Their RL supervision is weaker: they only know
how successful a whole sequence of actions was, and not the “correct” action they
should have taken at every timestep.

Our conclusion from Figure 9 is that at least the basic supervised learning task can
be accomplished with a small neural network, so the agent’s network has the capacity
required to estimate their raw negotiating power, abstracting away protocol details. We
now show that even when given the Shapley values in the underlying game, RL agents
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reach outcomes that may deviate from the Shapley value. We use an experimental
setup that is identical to that used to produce Figure 4, except we provide the Shapley
values of all the agents as a part of the observations in every state (we refer to this
a Shapley-Aware Propose-Accept environment). The outcome of the experiment is
shown in Figure 10.
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Figure 10: Shapley-Aware Propose-Accept

Figure 10 shows the same pattern as Figure 4. The deviation from game theoretic
predictions thus stems not from being unable to identify the “high-level” negotiation
position of agents, but rather from the RL procedure we applied; RL agents attempt
to maximize their own share of the gains (rather than for obtaining their “fair” share
of the gains, as captured by the Shapley value), and are forced to deal with a the need
to find strong policies taking into account the specific negotiation protocol (under a
non-stationary environment, where their peers constantly adapt their behavior). We
believe that this experiment gives some evidence that the deviation from the Shapley
value does not stem from the RL agents’ inability to determine their relative negotiation
power; The RL agents either do not manage to find a strong policy under the specific
negotiation protocol, or converge on an outcome different from the Shapley value due
to having a non-stationary environment with independent learners.

4.6. On the Relation Between the Shapley Value and Nash Equilibria in Our Negotia-
tion Environments

In Section 1 we presented our approach, which is based on investigating how agents
can negotiate team formation through a cooperative game theoretic prism. The key
solution concept we have applied in this work is the Shapley value, which we used as
a measure of agent power in cooperative games (see Section 2.1.2).

A cooperative game relates to a competition between groups of players (which are
referred to as “teams” or “coalitions”), typically in a setting where there is an external
enforcement of cooperative behavior [CEW11] (for instance, such enforcement can be
due to contract law). In contrast, in non-cooperative games agreements have to be “self-
enforcing”, for instance due to credible threats (or sometimes, the analysis ignores the
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forging of alliances altogether). In other words, the analysis of cooperative games is
focused on making predictions regarding which teams will form, what joint actions
the teams are likely to take, and how the payoffs would be allocated. Non-cooperative
game theory, on the other hand, attempts to predict the actions that would be taken by
individual players and the resulting individual utilities [OR94], typically by examining
Nash equilibria [Nas50].

As discussed in Section 3, cooperative game theory only considers the structure,
strategies and payoffs of teams (captured by a cooperative game based on a character-
istic function), and abstracts away the specific mechanism the individual agents use
to negotiate with one another. By defining a specific protocol through which agents
negotiate, including the actions that individual agents may take, we can also view the
setting as a non-cooperative game, and solve it using tools such as Nash equilibrium
analysis. However, the predictions of the Nash equilibrium analysis would depend on
the specific interaction protocol used. In Section 3.2 we proposed two specific negoti-
ation protocols, yielding the Propose-Accept environment 3.2.1 and the Team Patches
environment 3.2.2. As shown in Figure 1, though both environments may be based
on the same underlying cooperative game (with the same characteristic function of a
weighted voting game), they are two different Markov games. As we discuss in Sec-
tion 3.1, solving for the Nash equilibrium of even a two-player unrepeated general sum
game is computationally hard, being PPAD-complete [CD06]. We have thus used a
multi-agent reinforcement learning for our analysis.

Despite the general computational hardness results, we have managed to solve for
a Nash equilibrium of a simplified version of the Propose-Accept game, in the case
where the time horizon of the game is fixed (i.e. there is a fixed number of rounds,
rather than a certain probability of progressing to the next round). We briefly discuss
this analysis, which is based on the application of a solution technique called backwards
induction [OR94]. We then empirically analyze our Propose-Accept environment, and
show that the solutions predicted by this non-cooperative Nash equilibrium analysis
are correlated with the Shapley value, though the two are not identical.

We consider the Propose-Accept environment with a weighted voting game [w1, . . . , wn; q]
and a total integer reward r, where the number of proposals is fixed to exactly T rounds
(where all players know the number of rounds T ). We apply the principal of backwards
induction, solving the game from the last timestep backwards towards the first round.

Suppose that we are now in the final round. Denote by t the number of remaining
rounds, so we have t = 0 remaining rounds. Suppose that a proposal has been made
to player i, offering them a reward x > 0. Player i may accept the offer, giving them a
reward of x > 0 if all other proposees accept as well, or reject the proposal. In the case
of a rejection, as this is the final round (t = 0), the game would terminate with a reward
of zero to all players. Hence, clearly the rational strategy for player i is to accept this
proposal (even a small reward is preferable to zero reward). Let us denote the minimal
(threshold) offer for a player i to accept an offer when there are t remaining rounds as
ati. The minimal non-zero integer reward is 1, so we can restate the above by saying
that at=0

i = 1 for any player i.
Now consider the proposer in this final round t = 0. If the proposer is player

i = 1, they can choose any winning coalition (containing them), and any integral
reward allocation. Given the previous argument, as this is the final round t = 0, any
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player j offered a reward of at least at=0
j = 1 would accept the offer. Knowing that

any player j offered a reward of at least at=0
j = 1 would take the offer, player i = 1

would select some winning coalition C, give each other player j ∈ C \{i} the minimal
reward of at=0

j = 1 and keep r−
∑
j∈C\{i} a

t
j (offering any less than at=0

j = 1 would
mean j would reject the offer, but there is no point offering any more, as this would
come out of the proposer’s pocket). This offer would be accepted by the other players
(again, due to the previous argument), and as a result player i = 1 would achieve a
reward of r −

∑
j∈C\{i} a

t
j .

13

To maximize its utility r −
∑
j∈C\{i} a

t
j , player i would select the coalition C

that minimizes the payment to other players
∑
j∈C\{i} a

t
j , subject to the constraint

of having to choose a coalition that contains i and is winning (i.e. a coalition C
such that

∑
x∈C wx ≥ q). Denote the winning coalitions that contain i as Wi =

{C|i ∈ C,
∑
x∈C wx ≥ q} (note Wi is a set of coalitions). Thus, at time t, the

minimal payment i has to make to other players to guarantee acceptance is gti =
minC∈Wi

∑
j∈C\{i} a

t
j . For a proposer i at time t, we denote the set of coalitions

that result in this minimal outgoing payment as Cti = {C ∈ Wi|
∑
j∈C\{i} a

t
j = gti}

(i.e. at time t, if player i is a proposer they can select any coalition in Cti and any
of these would maximize its utility). We denote the amount that player i would win
when selected as the proposer at time t by dti, which as per the discussion above is
dti = k − gti .

We analyze the case where when a proposer i has multiple coalitions Cti it could
propose that maximize its utility (i.e. |Cti | > 1), they choose one of these coalitions to
propose uniformly at random. By proposing a coalition in Cx ∈ Cti , player i makes
a proposal that will be accepted (as each of proposee j ∈ Cx is offered its acceptance
threshold atj), so players outside of this proposed coalition will gain zero (as the game
terminates with an accepted proposal that does not include them). Suppose i is indeed
the proposer at time t and that i has decided to propose the coalition Cx ∈ Cti , and
consider how much a player j stands to gain due to this proposal, which we denote
as S(Cx, j, i, t) (where i is the proposer, Cx is the proposed coalition, j is the tar-
get player, and t is the number of remaining rounds). For a player j /∈ Cx, we have
S(Cx, j, i, t) = 0 as j is not in the proposed coalition. For a player j ∈ C, its util-
ity depends on whether they are the proposer or one of the other players: as per the
discussion above, a proposer i striving to maximize its share gives each other player
in the proposed coalition the minimal amount causing them to accept, and keeps the
remaining reward. Hence, if j 6= i we have S(Cx, j, i, t) = ati, and if j = i we have
S(Cx, j, i, t) = S(Cx, i, i, t) = dti.

The above discussion presents multiple variables, ati, g
t
i , d

t
i, C

t
i , S(Cx, j, i, t) each

only depending on other variables of timestep t. Further, given that at=0
i = 1 as

per the discussion above, we can compute all these variables for timestep t = 0 (i.e.
zero remaining game rounds). Hence, to compute all these variables for any timestep,
we need only show how the variable ati depends on the variables from the previous

13For the final round t = 0 we have r−
∑

j∈C\{i} a
t
j = r− |C|, however we write the equations for a

general round t).
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timestep t − 1. Now consider player i who rejects an offer when the game has t > 0
remaining rounds. In this case we proceed to the next round, and have only t − 1
remaining rounds. With probability 1/n player i will be chosen to be the proposer, in
which case they stand to gain the proposer’s utility dt−1

i . Each of the other players
j 6= i are also chosen with probability 1/n, and when player j is selected to be the
proposer they choose a coalition Cx out of the coalitions in Ct−1

j (with each coalition
Cx having an equal probability of 1

|Ct−1
j | to be chosen), which yields player i the utility

S(Cx, j, i, t− 1). A player i will accept an offer if it exceeds its expected payoff when
rejecting and proceeding to the next round, and as proposals are integers, we obtain:

ati = 1 +
1

n
dt−1
i +

∑
j 6=i

∑
Cx∈Ct−1

j

1

n · |Ct−1
j |

S(Cx, j, i, t− 1)

The above recursion allows us to solve for the variables for any round t, and thus
to solve for the Nash equilibrium of the game. We now illustrate this procedure us-
ing the game [w1 = 0.4, w2 = 0.4, w3 = 0.2, w4 = 0.2, w5 = 0.2; q = 1] with
a fixed integer reward of r = 20 and a fixed number of rounds T = 3 (where each
round includes both a propose phase and an accept/reject phase). Consider the last
round t = 0. As this is the last round, any player would accept any non-zero offer.
Hence, at=0

i = 1 for any player i. If player 1 is the proposer, they can select any
winning coalition containing them, offer at=0

i = 1 to all other members of the coali-
tion and keep the rest. Given the weights, we note that the set of winning coalitions
containing player 1 are W1 = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4, 5}}. Although
{1, 3, 4, 5} ∈ W1 is a winning coalition containing 1, this coalition requires player 1
to pay each of {3, 4, 5} their threshold offer at=0

3 = at=0
4 = at=0

5 = 1, which re-
sults in a total payment of

∑
j∈{3,4,5} a

t=0
j = 3. In contrast, the coalition {1, 2, 3}

is a winning coalition containing player 1, but requires player 1 to pay others less:∑
j∈{2,3} a

t=0
j = 2. Examining all the coalitions in W1 we observe that the coalitions

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} all require player 1 to make an equal payment of 2 to
others, hence Ct=0

1 = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} and gt=0
i = 2. Hence, if player 1

is the proposer in the final round, it is going to choose one of these coalitions in Ct=0
1

(uniformly at random), offer each of the remaining players a payment of at=0
1 = 1

(for all these coalitions there are two players beyond player 1, so the total payment is
gt=0

1 = 2), and retain the remaining reward of k−2, so dt=0
1 = k−gt=0

1 = 20−2 = 18.
In the case where the coalition Cx = {1, 2, 3} is proposed by player 1 (which oc-
curs with probability 1

|Ct=0
1 | = 1

3 )), player 1 would keep dt=0
1 , and give each of

Cx \{1} = {2, 3} their threshold at=0
2 = at=0

3 = 1, and keep the reminder dt=0
1 = 18.

Thus, S(Cx, 1, 1, 0) = 18 and S(Cx, 2, 1, 0) = S(Cx, 3, 1, 0) = 1 (and for any
j /∈ {1, 2, 3} we have S(Cx, j, 1, 0) = 0). Similarly, we can compute S(Cy, j, i, 0)
for any winning coalition Cy , and any players i, j. Following this, for any player i
we can compute at=1

i , its minimal offer to accept for the round just before the final
round (i.e. when there is t = 1 round remaining); we can then compute the remaining
variables for timestep t = 1 (gt=1

i , dt=1
i , Ct=1

i , and S(Cx, j, i, t = 1)), and so on.
Eventually, using this dynamic programming approach we can compute the variables
for the first round of the game t = T − 1.
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Our propose-accept environment selects the proposer at the first timestep uniformly
at random. We note that the formula for at=T−1

i computes the minimal offer player i
should accept at time t = T − 1 by adding one (the minimal integer increase) to
their expected utility (with the expectation taken over the identity of the proposer), so
player’s i expected utility in this game is at=T−1

i −1. To determine the expected utility
of a player i in a game with T rounds, we can examine the acceptance threshold of
that player at=T−1

i . This is the minimal integer offer strictly exceeding the expected
payoff of the player in the beginning of the round after which there are T −1 additional
rounds (i.e. a total of T rounds). The expected utility of the player in a game with T
rounds is thus vTi = at=T−1

i − 1. Applying the above computation for the game [w1 =
0.4, w2 = 0.4, w3 = 0.2, w4 = 0.2, w5 = 0.2; q = 1] we have the following player
utilities vt=10

1 = vt=10
2 = 6.29 and vt=10

3 = vt=10
4 = vt=10

5 = 2.473. In our example
we have used a value of r = 20, so

∑5
i=1 v

t=10
i = 20. Renormalizing the values

(setting ut=10
i =

vt=10
i∑
j v

t=10
j

), we get ut=10
1 = ut=10

2 = 0.315 and ut=10
3 = ut=10

4 =

ut=10
5 = 0.124. The Shapley values for this game are φ1 = φ2 = 0.3 and φ3 = φ4 =
φ5 = 13.333. Hence, in this case, the Shapley values in the underlying cooperative
correlate are close to the Nash equilibrium values computed for the respective propose-
accept environment (with a T = 10 rounds). We note that, even when considering only
the propose-accept protocol, the Nash equilibrium depends on the specific number of
rounds chosen (i.e. when computing the backwards induction solution for a different
number of rounds, we get different player utilities).

We now turn to investigate the correspondence between the Shapley values of the
underlying game, and the Nash equilibrium for the team formation game with the
Propose-Accept protocol (as mentioned above, we can only do this in the specific case
of this protocol and a fixed known number of rounds T ). We examine the same board
distribution we used for our analysis in Section 4.3, and apply the process discussed
above to compute the Nash equilibrium for the propose-accept game with T = 10
rounds. Figure 11 shows the correlation between the Shapley value in the underlying
cooperative game and the Nash equilibrium solution compute through the backwards
induction process discussed above. Each point in the figure on the left reflects a single
player (weight) in one of the boards used in our analysis, with the x-axis reflecting the
Shapley value of the player and the y-axis reflecting the proportion of the payoff that
player receives under the Nash equilibrium. The same data is shown on the right side
of Figure 11, in the form of density estimation contours.

As Figure 11 indicates, the Shapley values of players in the underlying cooper-
ative game are strongly correlated with the Nash equilibrium computed using back-
wards induction for the corresponding Propose-Accept game. Hence, the outcomes
obtained under multi-agent reinforcement learning also correlate with the Nash equi-
librium (both are strongly correlated with the Shapley value). A key advantage of using
the Shapley value analysis is that it is based on cooperative game theory, and relies only
on the underlying cooperative game. In other words, it does not rely on a specific ne-
gotiation protocol. We emphasize that we could only solve for the Nash equilibrium
in the Propose-Accept environment and not the more elaborate Team-Patches environ-
ment (in this case, the only viable option is the Shapley based analysis). Finally, we
note that generally multi-agent reinforcement learning may not converge to a Nash
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Figure 11: Correlation between the Shapley value and proportional Nash equilibrium payoffs in Propose-
Accept

equilibrium solution [SPG03].

5. Conclusions, Limitations and Future Work
Team formation is an important problem for multi-agent systems, since many real-

world tasks are impossible without the cooperation and coordination of multiple agents.
The team formation problem is a hard one, since agents must both find appropriate
collaborators and negotiate how to split the spoils of their team achievement. Although
cooperative game theory has inspired many hand-crafted bots, these typically don’t
generalize across negotiation protocols, and can’t easily be applied to temporally and
spatially extended environments.

This work aims to contribute on multiple fronts. First, we introduced a scalable
method for team-formation negotiation based on deep reinforcement learning which
generalizes to new negotiation protocols and does not require human data. Second,
we showed that negotiator agents derived by this method outperform simple hand-
crafted bots, and produce results consistent with cooperative game theory. Further, we
applied our method to spatially and temporally extended team-formation negotiation
environments, where solving for the equilibrium behavior is hard. Finally, we showed
that our method makes sensible predictions about the effect of spacial changes on agent
behavioral and negotiation outcomes.

We used the Shapley value from cooperative game theory to examine likely out-
comes in the underlying weighted voting game. The Propose-Accept environment and
the Team-Patches environment are both based on this underlying game, but define the
possible actions agents can take and the outcomes for various action profiles (i.e. they
employ a specific negotiation protocol). Thus, they can be viewed as a non-cooperative
(Markov) game.

For such setting, one can also examine solution concepts from non-cooperative
game theory, such as the Nash equilibrium [Nas50]. While in theory one could inves-
tigate the correspondence between the outcomes reached by RL agents and the Nash
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equilibrium in the game, computing the equilibrium for many negotiation games is
generally intractable. The Markov game formulation for either the Propose-Accept
and Team-Patches games is an n-player general-sum extensive-form games (with the
Propose-Accept environment being an infinitely-repeated game), in which it is com-
putationally hard to compute an equilibrium. Even the very restricted case of an unre-
peated two-player general-sum game is “hopelessly impractical to solve exactly” [SLB09,
Section 4.3], being PPAD-complete [CD06]. While we have managed to show how to
compute a Nash equilibrium in the very restricted case of the Propose-Accept protocol
with a fixed time-horizon, doing so for many other protocols is very likely intractable.
Hence, generally one can only apply cooperative game theoretic solutions (such as the
Shapley value), and compare them to the behaviour of RL agents.

Our existing method has some limitations. The key difficulty in our framework
is relying on multi-agent reinforcement learning, which has large computational costs
even for very restricted domains such as our simple environments [SPG03, BV00].
This might make our solution difficult to scale-up to environments where the environ-
ment simulation itself is computationally demanding. Further, as we discussed in Sec-
tion 4.1.1, multi-agent reinforcement learning may not converge at all, and even when
it does it may exhibit a different behavior from game theoretic solutions [BBDS+08,
LZG+17].

This work opens up a new avenue of research applying deep learning to team-
formation negotiation tasks. In particular, it would be interesting to analyze how team
formation dynamics affect emergent language in reinforcement learning agents, natu-
rally extending earlier work on cooperation and emerging communication [CLL+18b,
LPB16]. Indeed, it has been suggested that the human ability to negotiate and form
teams was critical in the evolution of language [TK18].

One might also consider creating tasks that interpolate between the fully coopera-
tive game-theoretic setting and the purely non-cooperative one. Fundamentally, bind-
ing contracts are managed by dynamic institutions, whose behavior is also determined
by learning. In principle, we could extend our method to this hierarchical case, perhaps
along the lines of [Gre06]. Perhaps such an analysis would even have implications for
the social and political sciences.
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