
A Appendix

A.1 Proof of Theorem 3

Define D(I) to be the information sets of player i reachable from I (including I). Define σ|D(I)→σ′ to be a
strategy profile equal to σ except in the information sets in D(I) where it is equal to σ′. The full counterfactual
regret is:

RT
i,full(I) = max

σ′∈Σ1

TX

t=1

πσt

−i(I)
`
ui(σ

t|D(I)→σ′ , I)− ui(σ
t, I)

´
(8)

Again, we define RT,+
1,full(I) = max(RT

1,full(I), 0). Moreover, we define succσ
i (I ′|I, a) to be the probability

that I ′ is the next information set of player i visited given that the action a was just selected in information
set I , and σ is the current strategy. If σ implies that I is unreachable because of an action of player i, that
action is changed to allow I to be reachable. Define Succi(I, a) to be the set of all possible next information
sets of player i visited given that action a ∈ A(I) was just selected in information set I . Define Succi(I) =S

a∈A(I) Succi(I, a).

The following lemma describes the relationship between full and immediate counterfactual regret.

Lemma 5 RT
i,full(I) ≤ RT

i,imm(I) +
P

I′∈Succi(I) RT,+
i,full(I

′)

Proof:

RT
i,full(I) =

1
T

max
a∈A(I)

max
σ′∈Σ1

TX

t=1

πσt

−i(I)

0

@ui(σ
t|I→a, I)− ui(σ

t, I) +
X

I′∈Succi(I,a)

succσ
i (I ′|I, a)

`
ui(σ

t|(D(I)→σ′ , I
′)− ui(σ

t, I ′)
´
1

A (9)

RT
i,full(I) ≤ 1

T
max

a∈A(I)
max

σ′∈Σ1

TX

t=1

πσt

−i(I)
`
ui(σ

t|I→a, I)− ui(σ
t, I)

´

+
1
T

max
a∈A(I)

max
σ′∈Σ1

TX

t=1

πσt

−i(I)
X

I′∈Succi(I,a)

succσ
i (I ′|I, a)

`
ui(σ

t|(D(I)→σ′ , I
′)− ui(σ

t, I ′)
´

(10)

The first part of the expression on the right hand side is the immediate regret. For the second, we know that
πσt

−i(I)succσ
i (I ′|I, a) = πσt

−i(I
′), and that ui(σ

t|D(I)→σ′ , I
′) = ui(σ

t|D(I′)→σ′ , I
′).

RT
i,full(I) ≤ RT

i,imm(I)

+
1
T

max
a∈A(I)

max
σ′∈Σ1

TX

t=1

X

I′∈Succi(I,a)

πσt

−i(I
′)
`
ui(σ

t|(D(I′)→σ′ , I
′)− ui(σ

t, I ′)
´

(11)

RT
i,full(I) ≤ RT

i,imm(I)

+ max
a∈A(I)

X

I′∈Succi(I,a)

1
T

max
a∈A(I)

max
σ′∈Σ1

TX

t=1

πσt

−i(I
′)
`
ui(σ

t|(D(I′)→σ′ , I
′)− ui(σ

t, I ′)
´

(12)

RT
i,full(I) ≤ RT

i,imm(I) + max
a∈A(I)

X

I′∈Succi(I,a)

RT
i,full(I

′) (13)

Because the game is perfect recall, given distinct a, a′ ∈ A(I), Succi(I, a) and Succi(I, a′) are disjoint. If
we define, Succi(I) =

S
a∈A(I) Succi(I, a), then:

RT
i,full(I) ≤ RT

i,imm(I) +
X

I′∈Succi(I)

RT,+
i,full(I

′) (14)

We prove Theorem 3 by using a lemma that can be proven recursively:

9



Lemma 6 RT
i,full(I) ≤

P
I′∈D(I) RT,+

i,imm(I).

Proof: We prove this for a particular game recursively on the size of D(I). Observe that if an information
set has no successors, then Lemma 5 proves the result. We use this as a basis step. Also, observe that D(I) =
{I} ∪

S
I′∈Succi(I) D(I ′), and that if I ′ ∈ Succi(I), then I /∈ D(I ′), implying |D(I ′)| < D(I). Thus, by

induction we can establish that:

RT
i,full(I) ≤ RT

i,imm(I) +
X

I′∈Succi(I)

X

I′′∈Succi(I′)

RT,+
i,imm(I ′′) (15)

≤ RT,+
i,imm(I) +

X

I′∈Succi(I)

X

I′′∈Succi(I′)

RT,+
i,imm(I ′′) (16)

Because the game is perfect recall, for any distinct I ′, I ′′ ∈ Succi(I), D(I ′) and D(I ′′) are disjoint. Therefore:

RT,+
i,imm(I) +

X

I′∈Succi(I)

X

I′′∈Succi(I′)

RT,+
i,imm(I ′′) =

X

I′∈D(I)

RT,+
i,imm(I ′) (17)

The result immediately follows.

Proof (of Theorem 3): If P (∅) = i, then RT
i,full({∅}) = RT

i , and the theorem follows from Lemma 6. If this
is not the case, then we can simply add a new information set at the beginning of the game, where player i only
has one action.

A.2 Regret Matching

Blackwell’s approachability theorem when applied to minimizing regret is known as regret matching. In
general, regret matching can be defined in a domain where there are a fixed set of actions A, a function ut :
A → R, and on each round a distribution over the actions pt is selected.

Define the regret of not playing action a ∈ A until time T as:

Rt(a) =
1
T

TX

t=1

ut(a)−
X

a∈A

pt(a)ut(a) (18)

and define Rt,+(a) = max(Rt(a), 0). To apply regret matching, one chooses the distribution:

pt(a) =

(
Rt−1,+(a)P

a′∈A Rt−1,+(a′) if
P

a′∈A Rt−1,+(a′) > 0
1
|A| otherwise

(19)

Theorem 7 If |u| = maxt∈{1...T} maxa,a′∈A(ut(a)− ut(a′)), the regret of the regret matching algorithm is
bounded by:

max
a∈A

Rt(a) ≤
|u|
p

|A|√
T

(20)

Blackwell’s original result [?] focused on the case where an action (or vector) is chosen at random (instead of
a distribution over actions) and gave a probabilistic guarantee. The result above focuses on the distributions
selected, and is more applicable to a scenario where a probability is selected instead of an action.

For a proof, see [5].

A.3 Proof of Theorem 4

Observe that Equation 7 is an implementation of regret matching. Moreover, observe that for all I ∈ Ii,
a ∈ A(I), πσt

−i(ui(σ
t|I→a, I) − ui(σ

t, I)) ≤ ∆u,i. Therefore, Theorem 7 states that the counterfactual
regret of that node will be less than ∆u,i

p
|A(I)|/

√
T ≤ ∆u,i|Ai|/

√
T . Summing over all I ∈ Ii yields the

result.

A.4 Poker-Specific Implementation

We need to iterate over all of the information sets reachable given the joint bucket sequence, and compute prob-
abilities and regrets. In order to do this swiftly, we represent the data in each information set in a “player view
tree”: in other words, we never explicitly represent every state in the abstracted game: instead, we represent the
information sets for each player in its own tree, with each node n being one of four types:
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• Bucket Nodes: nodes representing where information about the cards is observed. Has a child node
(an opponent or player node) for each different class that could be observed at that point.

• Opponent Nodes: nodes representing where the opponent takes an action. Has a child node for each
action.

• Player Nodes: nodes representing where the current player takes an action. Contains the average
regret with respect to each action, the total probability for each action until this point, and a child
node for each action (either an opponent, bucket, or terminal node). There is an implicit information
set associated with this node, which we will write as I(n).

• Terminal Nodes: nodes where the game ends due to someone folding or a showdown. Given the
probability of a win,loss, and tie, has sufficient information to compute an expected utility for the
hand given that the node was reached.

Each player observes different pieces of information about the game, and therefore travels to a different part of
its tree during the computation. Our algorithm recurses over both trees in a paired fashion. Before we begin,
define u′i(σ, I) = π−iui(σ, I). For each node in the trees, there will be a value ui(σ, n) which we use in order
to compute the values ui(σ, I) and ui(σ, I, a), which is the expected value given information set I is reached
and action a is taken.

Algorithm 1 WALKTREES(r1, r2, b, p1, p2)
Require: A node r1 for an information set tree for player 1.
Require: A node r2 for an information set tree for player 2.
Require: A joint bucket sequence b.
Require: A probability p1 of player 1 playing to reach the node.
Require: A probability p2 of player 2 playing to reach the node.
Ensure: The utility ui(σ, ri) for player 1 and player 2.

1: if r1 is a player node (meaning r2 is an opponent node) then
2: Compute σ1(I(r1)) according to Equation 7.
3: for Each action a ∈ A(I(r1)) do
4: Find the associated child of c1 of r1 and c2 of r2.
5: Compute u1(σ, I(r1), a) and u2(σ, r2, a) from WALKTREES(c1, c2, b, p1 ×

σ1(I(r1))(a), p2).
6: end for
7: Compute u1(σ, I(r1))) =

∑
a∈A(I(r1))

σ1(I(r1))(a)u1(σ, I(r1), a).
8: for Each action a ∈ A(I(r1)) do
9: R1(I, a) = 1

T+1 (TR1(I, a) + p2(u1(σ, I(r1), a)− u1(σ, I(r1))))
10: end for
11: Set u1(σ, r1) = u1(σ, I(r1))
12: Compute u2(σ, r2) =

∑
a∈A(I(r1))

σ1(I(r1))(a)u2(σ, r2, a).
13: else if r2 is a player node (meaning r1 is an opponent node) then
14: do (opposite of above)
15: else if r1 is a bucket node then
16: Choose the child c1 of r1 according to the class in b for player 1 on the appropriate round and

the child c2 of r2 similarly.
17: Find u1(σ, c1) and u2(σ, c2) from WALKTREES(c1, c2, b, p1, p2).
18: Set u1(σ, r1) = u1(σ, c1) and u2(σ, r2) = u2(σ, c2).
19: else if r1 is a terminal node then
20: Find u1(σ, r1) and u2(σ, r2), the utility of each player if this node is actually reached.
21: end if

A.5 Poker-Specific Analysis

We first analyze the non-sampling algorithm from Section 3, significantly tightening the presented regret bounds
for the specific case of poker games. We then give a regret analysis for the sampling implementation described
in Section 4 and used in the experimental results presented in Section 5.

A.5.1 Non-Sampling Algorithm

In Section 3, we discussed Blackwell’s Approachability Theorem being applied in every information set. The
disadvantage of such an algorithm is that every iteration involves a walk across the entire game tree. The

11



advantage of such an algorithm is that it converges really quickly in terms of iterations. In this analysis, we
focus on poker.

If we can bound the difference in any two counterfactual utilities at every information set, we can achieve a
bound on the overall regret, because Blackwell’s Approachability Theorem gives a guarantee based upon this.
In particular, after T time steps, if the bound for the counterfactual utility at an information set is ∆u,1(I), and
there are |A(I)| actions, then the counterfactual regret is bounded by:

RT
1 (I) ≤

∆u,1(I)
p

|A(I)|√
T

(21)

By Theorem 3, this means the average overall regret is bounded by:

RT
1 ≤

X

I∈I1

∆u,1(I)
p

|A(I)|√
T

(22)

First of all, define ∆u,1 to be the overall range of utilities in limit poker (48 small bets/hand). In particular,
given π0(I) (the probability of chance acting to reach a node), ∆u,1(I) ≤ π0(I)∆u,1. In limit one could be
more precise, because any information set that begins with both players checking on the pre-flop has a tighter
limit on the maximum won or lost, but bounding based on chance nodes is more crucial. In the next step, we
leverage the structure of poker: in particular, the fact that all actions are observable. Define B1 to be the set
of all betting sequences where the first player has to act: in particular, B1 can be considered a partition of the
information sets I1 (such that each B ∈ B1 is a set of information sets). Note that, for all B ∈ B1:

X

I∈B

π0(I) = 1 (23)

Moreover, observe that we can define A(B) to be the set of actions available at any information set in B.
Applying these concepts to the equation:

RT
1 ≤

X

B∈B1

p
|A(B)|∆u,1√

T
(24)

RT
1 ≤

∆u,1√
T

X

B∈B1

p
|A(B)| (25)

Thus, increasing the size of the card abstraction does not affect the rate of convergence. This is not as surprising
as one might think: if one imagined n independent algorithms minimizing regret, each with a bound on their
utility of ∆u,1, then one would expect that the theoretical bound on the average of the algorithms would closely
resemble the theoretical bound on the average of one particular algorithm. This is very similar to what was
leveraged in this section. However, the number of information sets does have an affect on the cost of an
iteration: each game state in the abstraction must be traversed in every iteration. This is the primary motivation
for WALKTREES.

A.5.2 Sampling Algorithm

In order to analyze WALKTREES, we focus on two different measures of regret:

1. R̂, the regret measured by the algorithm.
2. R, the underlying regret (if all states were visited every iteration).

In this implementation, the range of counterfactual utilities can be ∆u,1 in almost every state. Define CT (I) to
be the number of times an information set I was visited until time T : in particular, how many times the bucket
sequence that makes I reachable was selected. Blackwell’s Approachability Theorem yields us:

R̂T
1 (I) ≤

∆u,1(I)
p

|A(I)|
p

CT (I)

T
(26)

Observe that for any B ∈ B1 (see Section A.5.1),
P

I∈B CT (I) = T . Define Y = maxB∈B1 |B|, in other
words the number of card partitions on the river. Then

P
I∈B

p
CT (I) ≤

√
Y T .

X

I∈B

R̂T (I) ≤
X

I∈B

∆u,1|A(I)|
p

CT (I)

T
(27)

X

I∈B

R̂T (I) ≤
p

|A(B)|∆u,1

√
Y√

T
R̂T

1 ≤ ∆u,1

√
Y√

T

X

B∈B1

p
|A(B)| (28)

R̂T
1 ≤

∆u,1

√
Y√

T
|B1|

p
|A1| (29)
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Thus, the regret bound has increased by a factor of
√

Y : however, the computation per round has decreased by
a factor of nearly Y 2, resulting in a dramatic overall gain, so long as R and R̂ are similar.

This last portion is tricky: since the algorithm is randomized, we cannot guarantee that every information set is
reached, let alone that it has converged. Therefore, instead of proving a bound on the absolute difference of R
and R̂, we focus on proving a probabilistic connection.

In particular, we will focus on the similarity of the counterfactual regret (RT (I) and R̂T (I)) in every node.
In particular, we will focus on the similarity of the counterfactual regret of a particular action at a particular
time (rt

1(I, a) and r̂t
1(I, a)). Define Reacht(I) to be true if I is reachable given the actions of nature at time t.

Formally:

rt
1(I, a) = πσt

−1(I)
`
u1(σ

t|I→a, I)− u1(σ
t, I)

´
(30)

r̂t
1(I, a) =

(
rt
1(I,a)
π0(I) if Reacht(I)

0 otherwise
(31)

It is the case that E[rt
1(I, a) − r̂t

1(I, a)] = 0. These are the elementary components of RT
1 (I) and R̂T (I),

because:

RT
1 (I) =

1
T

max
a∈A(I)

TX

t=1

rt
1(I, a) (32)

R̂T
1 (I) =

1
T

max
a∈A(I)

TX

t=1

r̂t
1(I, a) (33)

We bound the expected squared difference between
P

I∈Ii
RT

1 (I) and
P

I∈Ii
R̂T

1 (I) in order to prove that
they are close, because for any random variable X:

Pr[|X| ≥ k
p

E[X2]] ≤ 1
k2

(34)

by Markov’s Inequality.

E[(
X

I∈I1

(RT
1 (I)− R̂T

1 (I)))2] ≤ |I1|
X

I∈I1

E[(RT
1 (I)− R̂T

1 (I))2] (35)

This is because, for all a1 . . . ak ∈ R, (sumk
i=1ai)

2 ≤ k
Pk

i=1 a2
i . Finally:

(RT
1 (I)− R̂T

1 (I))2 =

 
1
T

max
a∈A(I)

TX

t=1

rt
1(I, a)− 1

T
max

a∈A(I)

TX

t=1

r̂t
1(I, a)

!2

(36)

(RT
1 (I)− R̂T

1 (I))2 ≤ 1
T 2

max
a∈A(I)

 
TX

t=1

rt
1(I, a)−

TX

t=1

r̂t
1(I, a)

!2

(37)

(RT
1 (I)− R̂T

1 (I))2 ≤ 1
T 2

X

a∈A(I)

 
TX

t=1

rt
1(I, a)−

TX

t=1

r̂t
1(I, a)

!2

(38)

E[(RT
1 (I)− R̂T

1 (I))2] ≤ 1
T 2

X

a∈A(I)

TX

t=1

E[
`
rt
1(I, a)− r̂t

1(I, a)
´2

] (39)

The final step is because if t )= t′, then E[
`
rt
1(I, a)− r̂t

1(I, a)
´ “

rt′
1 (I, a)− r̂t′

1 (I, a)
”
] = 0. Substituting

back into Equation 35:

E[(
X

I∈I1

(RT
1 (I)− R̂T

1 (I)))2] ≤ |I1|
T 2

X

I∈I1

X

a∈A(I)

TX

t=1

E[
`
rt
1(I, a)− r̂t

1(I, a)
´2

] (40)

Recall that πσt

−1(I) = πσt

2 (I)πσt

0 (I). Thus, |rt
1(I, a)| ≤ ∆u,1π

σt

0 , and r̂t
1(I, a) ≤ ∆u,1. Also, Pr[r̂t

1(I, a) )=
0] ≤ π0(I). Finally:

E[(r̂t
1(I, a)− r̂t

1(I, a))2|Reach(I)] ≤ 2∆2
u,1 (41)

E[(r̂t
1(I, a)− r̂t

1(I, a))2|¬Reach(I)] ≤ 2π0(I)∆2
u,1 (42)

E[(r̂t
1(I, a)− r̂t

1(I, a))2] ≤ 4π0(I)∆2
u,1 (43)
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Thus, substituting back into Equation 40:

E[(
X

I∈I1

(RT
1 (I)− R̂T

1 (I)))2] ≤ |I1|
T 2

X

I∈I1

X

a∈A(I)

TX

t=1

4π0(I)∆2
u,1 (44)

E[(
X

I∈I1

(RT
1 (I)− R̂T

1 (I)))2] ≤
4|I1|∆2

u,1

T

X

I∈I1

|A(I)|π0(I) (45)

(46)

Again, by focusing on Bi:

E[(
X

I∈I1

(RT
1 (I)− R̂T

1 (I)))2] ≤
4|I1|∆2

u,1

T

X

B∈B1

X

I∈B

|A(I)|π0(I) (47)

E[(
X

I∈I1

(RT
1 (I)− R̂T

1 (I)))2] ≤
4|I1|∆2

u,1

T

X

B∈B1

|A(B)| (48)

For any p ∈ [0, 1], with probability at least 1− p:

RT
1 ≤

2
p

|I1||B1||A1|∆u,1√
pT

+
∆u,1

√
Y√

T
|B1|

p
|A1| (49)
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