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Second Man-Machine Poker Championship

Just arrived from the Second Man-Machine Poker Championship in
Las Vegas

Our program, Polaris, played six 500 hand duplicate matches against
six poker pros over 4 days

Final score: 3 wins, 2 losses, 1 tie! AI Wins!

This research played a critical role in our success



The Problem

Several candidate strategies to choose from

Only have samples of one strategy playing against your opponent

Samples may not even have full information

Problem 1: How can we estimate the performance of the other
strategies, based on these samples?

Problem 2: How can we reduce luck (variance) in our estimates?

Money = Skill + Luck + Position
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The Solution

Importance Sampling for evaluating other strategies

Combine with existing estimators to reduce variance

Create additional synthetic data (Main contribution)

Assumes that the opponent’s strategy is static

General approach, not poker specific

On Policy Off Policy

Perfect Information Unbiased Bias

Partial Information Bias Bias



Repeated Extensive Form Games



Extensive Form Games

σi - A strategy.
Action probabilities for player i

σ - A strategy profile.
Strategy for each player

πσ(h) -Probability of σ reaching
h

πσ
i (h) - i ’s contribution to πσ(h)

πσ
−i (h) - Everyone but i ’s

contribution to πσ(h)
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Importance Sampling

For the terminal nodes z ∈ Z , we can evaluate strategy profile σ with
Monte Carlo estimation:

Ez|σ [V (z)] =
1

t

t∑
i=1

V (zi ) (1)

Importance Sampling is a well known technique for estimating the
value of one distribution by drawing samples from another distribution

Useful if one distribution is “expensive” to draw samples from



Importance Sampling for Strategy Evaluation

σ - strategy profile containing a strategy we want to evaluate

σ̂ - strategy profile containing an observed strategy

In the on-policy case, σ = σ̂

Ez|σ̂ [V (z)] =
1

t

t∑
i=1

V (zi )
πσ(z)

πσ̂(z)
(2)

=
1

t

t∑
i=1

V (zi )
πσ

i (z)πσ
−i (z)

πσ̂
i (z)πσ̂

−i (z)
(3)

=
1

t

t∑
i=1

V (zi )
πσ

i (z)

πσ̂
i (z)

(4)

Note that the probabilities that depend on the opponent and chance
players cancel out!
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Basic Importance Sampling and alternate estimators

On-policy basic importance sampling: just monte-carlo sampling

Off-policy basic importance sampling: high variance, some bias

Any value function can be used

For example - the DIVAT estimator for Poker, which is unbiased and
low variance

We can also create synthetic data. This is the main contribution of
the paper.
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U(z ′) and U−1(z)

After observing some terminal histories, you can pretend that
something else had happened.

Z is the set of terminal histories

If we see z , U−1(z) ⊆ Z is the set of synthetic histories we can also
evaluate

Equivalently, if we see a member of U(z ′), we can also evaluate z ′

If we choose U carefully, we can still cancel out the opponent’s
probabilities!

Two examples - Game-Ending Actions and Other Private Information
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Game-Ending Actions

h is an observed history

S−i (z
′) ∈ H is a place we could

have ended the game

z ′ ∈ U−1(z) is the set of
synthetic histories where we do
end the game

∑
z ′∈U−1(z)

V (z ′)
πσ

i (z ′)

πσ̂
i (S−i (z ′))

= Ez|σ̂ [V (z)]

(5)

Provably unbiased in the on-policy, full information case
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Private Information

Pretend you had other private
information than you actually
received

Opponent’s strategy can’t
depend on our private
information

In poker, pretend you held
different ’hole cards’. 2375 more
samples per game!

U(z) ={
z ′ ∈ Z : ∀σ πσ

−i (z
′) = πσ

−i (z)
}

∑
z ′∈U−1(z)
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Results

Bias StdDev RMSE
On-Policy: S2298

Basic 0* 5103 161
BC-DIVAT 0* 2891 91

Game Ending Actions 0* 5126 162
Private Information 0* 4213 133

PI+BC-DIVAT 0* 2146 68
PI+GEA+BC-DIVAT 0* 1778 56

Off-Policy: CFR8
Basic 200 ± 122 62543 1988

BC-DIVAT 84 ± 45 22303 710
Game Ending Actions 123 ± 120 61481 1948

Private Information 12 ± 16 8518 270
PI+BC-DIVAT 35 ± 13 3254 109

PI+GEA+BC-DIVAT 2 ± 12 2514 80

1 million hands of S2298 vs PsOpti4

Units: millibets/game

RMSE is Root Mean Squared Error over 500 games



Results

Bias StdDev RMSE
Min – Max Min – Max Min – Max

On Policy
Basic 0* – 0* 5102 – 5385 161 – 170

BC-DIVAT 0* – 0* 2891 – 2930 91 – 92
PI+GEA+BC-DIVAT 0* – 0* 1701 – 1778 54 – 56

Off Policy
Basic 49 – 200 20559 – 244469 669 – 7732

BC-DIVAT 10 – 103 12862 – 173715 419 – 5493
PI+GEA+BC-DIVAT 2 – 9 1816 – 2857 58 – 90

1 million hands of S2298, CFR8, Orange against PsOpti4

Units: millibets/game

RMSE is Root Mean Squared Error over 500 games



Conclusion: Man Machine Poker Championship

Highest Standard Deviation: 1228 millibets/game


