Strategy Evaluation in Extensive Games with Importance Sampling

Michael Bowling, Michael Johanson, Neil Burch, Duane Szafron

July 8, 2008

Second Man-Machine Poker Championship

- Just arrived from the Second Man-Machine Poker Championship in Las Vegas
- Our program, Polaris, played six 500 hand duplicate matches against six poker pros over 4 days

◆□> ◆□> ◆豆> ◆豆> □目

- Final score: 3 wins, 2 losses, 1 tie! Al Wins!
- This research played a critical role in our success

The Problem

- Several candidate strategies to choose from
- Only have samples of one strategy playing against your opponent
- Samples may not even have full information

The Problem

- Several candidate strategies to choose from
- Only have samples of one strategy playing against your opponent
- Samples may not even have full information
- Problem 1: How can we estimate the performance of the other strategies, based on these samples?

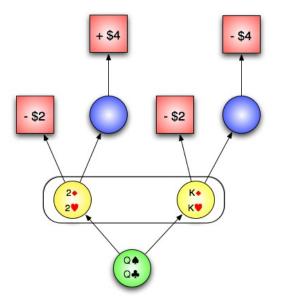
The Problem

- Several candidate strategies to choose from
- Only have samples of one strategy playing against your opponent
- Samples may not even have full information
- Problem 1: How can we estimate the performance of the other strategies, based on these samples?
- Problem 2: How can we reduce luck (variance) in our estimates?
 - Money = Skill + Luck + Position

- Importance Sampling for evaluating other strategies
- Combine with existing estimators to reduce variance
- Create additional synthetic data (Main contribution)
- Assumes that the opponent's strategy is static
- General approach, not poker specific

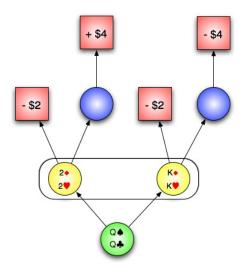
	On Policy	Off Policy
Perfect Information	Unbiased	Bias
Partial Information	Bias	Bias

Repeated Extensive Form Games



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Extensive Form Games

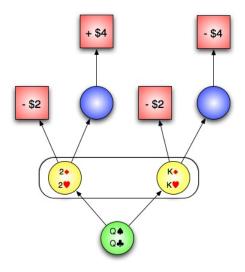


σ_i - A strategy.
 Action probabilities for player i

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

σ - A strategy profile.
 Strategy for each player

Extensive Form Games



- σ_i A strategy.
 Action probabilities for player i
- σ A strategy profile.
 Strategy for each player
- $\pi^{\sigma}(h)$ -Probability of σ reaching h
- $\pi_i^{\sigma}(h)$ *i*'s contribution to $\pi^{\sigma}(h)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\pi^{\sigma}_{-i}(h)$ - Everyone but *i*'s contribution to $\pi^{\sigma}(h)$

For the terminal nodes $z \in Z$, we can evaluate strategy profile σ with Monte Carlo estimation:

$$E_{z|\sigma}[V(z)] = \frac{1}{t} \sum_{i=1}^{t} V(z_i)$$
(1)

- Importance Sampling is a well known technique for estimating the value of one distribution by drawing samples from another distribution
- Useful if one distribution is "expensive" to draw samples from

Importance Sampling for Strategy Evaluation

- σ strategy profile containing a strategy we want to evaluate
- $\hat{\sigma}$ strategy profile containing an observed strategy
- In the on-policy case, $\sigma=\hat{\sigma}$

$$E_{z|\hat{\sigma}} [V(z)] = \frac{1}{t} \sum_{i=1}^{t} V(z_i) \frac{\pi^{\sigma}(z)}{\pi^{\hat{\sigma}}(z)}$$
(2)
$$= \frac{1}{t} \sum_{i=1}^{t} V(z_i) \frac{\pi^{\sigma}_i(z)\pi^{\sigma}_{-i}(z)}{\pi^{\hat{\sigma}}_i(z)\pi^{\hat{\sigma}}_{-i}(z)}$$
(3)
$$= \frac{1}{t} \sum_{i=1}^{t} V(z_i) \frac{\pi^{\sigma}_i(z)}{\pi^{\hat{\sigma}}_i(z)}$$
(4)

Importance Sampling for Strategy Evaluation

- $\bullet~\sigma$ strategy profile containing a strategy we want to evaluate
- $\hat{\sigma}$ strategy profile containing an observed strategy
- In the on-policy case, $\sigma=\hat{\sigma}$

$$E_{z|\hat{\sigma}} [V(z)] = \frac{1}{t} \sum_{i=1}^{t} V(z_i) \frac{\pi^{\sigma}(z)}{\pi^{\hat{\sigma}}(z)}$$
(2)
$$= \frac{1}{t} \sum_{i=1}^{t} V(z_i) \frac{\pi^{\sigma}_i(z)\pi^{\sigma}_{-i}(z)}{\pi^{\hat{\sigma}}_i(z)\pi^{\hat{\sigma}}_{-i}(z)}$$
(3)
$$= \frac{1}{t} \sum_{i=1}^{t} V(z_i) \frac{\pi^{\sigma}_i(z)}{\pi^{\hat{\sigma}}_i(z)}$$
(4)

• Note that the probabilities that depend on the opponent and chance players cancel out!

- On-policy basic importance sampling: just monte-carlo sampling
- Off-policy basic importance sampling: high variance, some bias

- On-policy basic importance sampling: just monte-carlo sampling
- Off-policy basic importance sampling: high variance, some bias
- Any value function can be used
 - For example the DIVAT estimator for Poker, which is unbiased and low variance

- On-policy basic importance sampling: just monte-carlo sampling
- Off-policy basic importance sampling: high variance, some bias
- Any value function can be used
 - For example the DIVAT estimator for Poker, which is unbiased and low variance

• We can also create synthetic data. This is the main contribution of the paper.

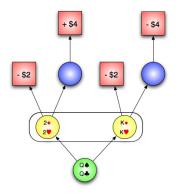
• After observing some terminal histories, you can pretend that something else had happened.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- After observing some terminal histories, you can pretend that something else had happened.
- Z is the set of terminal histories
- If we see z, $U^{-1}(z) \subseteq Z$ is the set of synthetic histories we can also evaluate
- Equivalently, if we see a member of U(z'), we can also evaluate z'

- After observing some terminal histories, you can pretend that something else had happened.
- Z is the set of terminal histories
- If we see z, $U^{-1}(z) \subseteq Z$ is the set of synthetic histories we can also evaluate
- Equivalently, if we see a member of U(z'), we can also evaluate z'
- If we choose *U* carefully, we can still cancel out the opponent's probabilities!
- Two examples Game-Ending Actions and Other Private Information

Game-Ending Actions

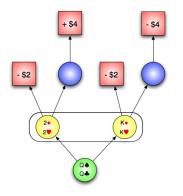


• *h* is an observed history

(5)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Game-Ending Actions

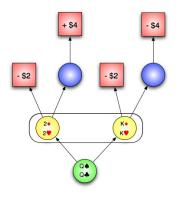


- *h* is an observed history
- S_{-i}(z') ∈ H is a place we could have ended the game

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

(5)

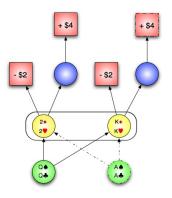
Game-Ending Actions



- *h* is an observed history
- S_{-i}(z') ∈ H is a place we could have ended the game
- z' ∈ U⁻¹(z) is the set of synthetic histories where we do end the game

$$\sum_{z' \in U^{-1}(z)} V(z') \frac{\pi_i^{\sigma}(z')}{\pi_i^{\hat{\sigma}}(S_{-i}(z'))} = E_{z|\hat{\sigma}} \left[V(z) \right]$$
(5)

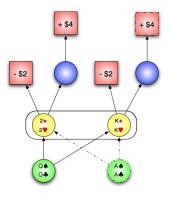
Provably unbiased in the on-policy, full information case



- Pretend you had other private information than you actually received
- Opponent's strategy can't depend on our private information

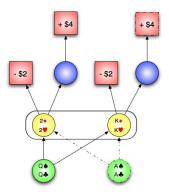
(6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



- Pretend you had other private information than you actually received
- Opponent's strategy can't depend on our private information
- In poker, pretend you held different 'hole cards'. 2375 more samples per game!

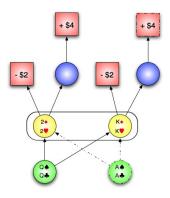
(6)



- Pretend you had other private information than you actually received
- Opponent's strategy can't depend on our private information
- In poker, pretend you held different 'hole cards'. 2375 more samples per game!
- $U(z) = \{z' \in Z : \forall \sigma \ \pi^{\sigma}_{-i}(z') = \pi^{\sigma}_{-i}(z)\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(6)



- Pretend you had other private information than you actually received
- Opponent's strategy can't depend on our private information
- In poker, pretend you held different 'hole cards'. 2375 more samples per game!
- $U(z) = \{z' \in Z : \forall \sigma \ \pi^{\sigma}_{-i}(z') = \pi^{\sigma}_{-i}(z)\}$

・ロト ・雪 ・ 当 ・ ・ ヨ ・ うへぐ

$$\sum_{z' \in U^{-1}(z)} V(z') \frac{\pi_i^{\sigma}(z')}{\pi_i^{\hat{\sigma}}(U(z'))} = E_{z|\hat{\sigma}} \left[V(z) \right]$$
(6)

Provably unbiased in on-policy, full information case

Results

	Bias	StdDev	RMSE
On-Policy: S2298			
Basic	0*	5103	161
BC-DIVAT	0*	2891	91
Game Ending Actions	0*	5126	162
Private Information	0*	4213	133
PI+BC-DIVAT	0*	2146	68
PI+GEA+BC-DIVAT	0*	1778	56
Off-Policy: CFR8			
Basic	200 ± 122	62543	1988
BC-DIVAT	84 ± 45	22303	710
Game Ending Actions	123 ± 120	61481	1948
Private Information	12 ± 16	8518	270
PI+BC-DIVAT	35 ± 13	3254	109
PI+GEA+BC-DIVAT	2 ± 12	2514	80

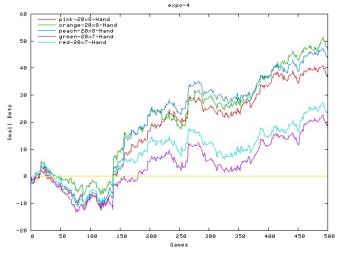
- 1 million hands of S2298 vs PsOpti4
- Units: millibets/game
- RMSE is Root Mean Squared Error over 500 games

	Bias		StdDev		RMSE				
	Min	-	Max	Min	-	Max	Min	-	Max
On Policy									
Basic	0*	-	0*	5102	-	5385	161	-	170
BC-DIVAT	0*	-	0*	2891	-	2930	91	-	92
PI+GEA+BC-DIVAT	0*	-	0*	1701	-	1778	54	-	56
Off Policy									
Basic	49	-	200	20559	-	244469	669	-	7732
BC-DIVAT	10	-	103	12862	-	173715	419	-	5493
PI+GEA+BC-DIVAT	2	-	9	1816	-	2857	58	-	90

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1 million hands of S2298, CFR8, Orange against PsOpti4
- Units: millibets/game
- RMSE is Root Mean Squared Error over 500 games

Conclusion: Man Machine Poker Championship



Highest Standard Deviation: 1228 millibets/game

・ロト ・ 理 ・ ・ ヨ ・ ・

ъ