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Abstract

The problem of exploiting information about the
environment while still being robust to inaccu-
rate or incomplete information arises in many
domains. Competitive imperfect information
games where the goal is to maximally exploit an
unknown opponent’s weaknesses are an example
of this problem. Agents for these games must
balance two objectives. First, they should aim to
exploit data from past interactions with the op-
ponent, seeking a best-response counter strategy.
Second, they should aim to minimize losses since
the limited data may be misleading or the oppo-
nent’s strategy may have changed, suggesting an
opponent-agnostic Nash equilibrium strategy. In
this paper, we show how to partially satisfy both
of these objectives at the same time, producing
strategies with favourable tradeoffs between the
ability to exploit an opponent and the capacity
to be exploited. Like a recently published tech-
nique, our approach involves solving a modified
game; however the result is more generally appli-
cable and even performs well in situations with
very limited data. We evaluate our technique in
the game of two-player, Limit Texas Hold’em.

1 Introduction

Maximizing utility in the presence of other agents is a fun-
damental problem in game theory. In a zero-sum game,
utility comes from the exploitation of opponent weak-
nesses, but it is important not to allow one’s own strategy to
be exploited in turn. Two approaches to such problems are
well known: best response strategies and Nash equilibrium
strategies. A best response strategy maximizes utility for
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an agent, assuming perfect knowledge of its static oppo-
nent. However, such strategies are brittle: against a worst
case opponent, they have a high exploitability. In a two-
player zero-sum game, a Nash equilibrium strategy maxi-
mizes its utility against a worst-case opponent. As a result,
we say that such strategies are robust. If a perfect model
of the opponent is available, then they can be exploited by
a best response; if a model is not available, then playing a
Nash equilibrium strategy is a sensible choice. However,
if a model exists but it is somewhat unreliable (e.g., if it is
formed from a limited number of observations of the oppo-
nent’s actions, or if the opponent is known to be changing
strategies) then a better option may be to compromise: ac-
cepting a slightly lower worst-case utility in return for a
higher utility if the model is approximately correct.

One simple approach for creating such a compromise strat-
egy is to create both a best response strategy and a Nash
equilibrium strategy, and then play a mixture of the two.
Before each game, we will flip a biased coin. With prob-
ability p we will use the best response, and with probabil-
ity (1 − p) we will use the Nash equilibrium. By varying
p, we can create a range of strategies that linearly trade
off exploitation of the opponent and our own exploitability
by a worst-case opponent. While this approach is a useful
baseline, we would like to make more favourable tradeoffs
between these goals.

McCracken and Bowling [McCracken and Bowling, 2004]
proposed ε-safe strategies as another approach. The set of
ε-safe strategies contains all strategies that are exploitable
by no more than ε. From this set, the strategies that maxi-
mize utility against the opponent are the set of ε-safe best
responses. Thus, for a chosen ε, the set of ε-safe best
responses achieve the best possible tradeoffs between ex-
ploitation and exploitability. However, their approach is
computationally infeasible for large domains, and has only
been applied to Ro-Sham-Bo (Rock-Paper-Scissors).

In previous work we proposed the restricted Nash re-
sponse [Johanson et al., 2008] technique (RNR) as a prac-
tical approach for generating a range of strategies that pro-
vide good tradeoffs between exploitation and exploitabil-



ity. In this approach, a modified game is formed in which
the opponent is forced to act according to an opponent
model with some probability p, and is free to play the
game as normal with probability (1 − p). When p is 0
the result is a Nash equilibrium, and when p is 1 the re-
sult is a best response. When 0 < p < 1 the technique
produces a counter-strategy that provides different trade-
offs between exploitation and exploitability. In fact, the
counter-strategies generated are in the set of ε-safe best re-
sponses for the counter-strategy’s value of ε, making them
the best possible counter-strategies, assuming the model is
correct. In a practical setting, however, the model is likely
formed through a limited number of observations of the op-
ponent’s actions, and it may be incomplete (it cannot pre-
dict the opponent’s strategy in some states) or inaccurate.
As we will show in this paper, the restricted Nash response
technique can perform poorly under such circumstances.

In this paper, we present a new technique for generat-
ing a range of counter-strategies that form a compromise
between the exploitation of a model and its exploitabil-
ity. These counter-strategies, called data biased responses
(DBR), are more resilient to incomplete or inaccurate
models than the restricted Nash response (RNR) counter-
strategies. DBR is similar to RNR in that the technique in-
volves computing a Nash equilibrium strategy in a modified
game where the opponent is forced with some probability
to play according to a model. Unlike RNR, the opponent’s
strategy is constrained on a per-information set basis, and
depends on our confidence in the accuracy of the model.
For comparison to the RNR technique, we demonstrate the
effectiveness of the technique in the challenging domain of
2-player Limit Texas Hold’em Poker.

2 Background

A perfect information extensive game consists of a tree
of game states and terminal nodes. At each game state, an
action is taken by one player (or by “chance”) causing a
transition to a child state; this is repeated until a terminal
state is reached. The terminal state defines the payoffs to
the players. In imperfect information extensive games
such as poker, the players cannot observe some piece of in-
formation (such as their opponent’s cards) and so they can-
not exactly determine which game state they are in. Each
set of indistinguishable game states is called an informa-
tion set and we denote such a set by I ∈ I. A strategy for
player i, σi, is a mapping from information sets to a proba-
bility distribution over actions, so σi(I, a) is the probability
player i takes action a in information set I . The space of all
possible strategies for player i will be denoted Σi. In this
paper, we will focus on two player games.

Given strategies for both players, we define ui(σ1, σ2) to
be the expected utility for player i if player 1 uses the strat-
egy σ1 ∈ Σ1 and player 2 uses the strategy σ2 ∈ Σ2. A

best response to an opponent’s strategy σ2 is a strategy for
player 1 that achieves the maximum expected utility of all
strategies when used against the opponent’s strategy. There
can be many strategies that achieve the same expected util-
ity; we refer to the set of best responses as BR(σ2) ⊆ Σ1.
For example, the set of best responses for player 1 to use
against σ2 is defined as:

BR(σ2) = { σ1 ∈ Σ1 :
∀σ′

1 ∈ Σ1u1(σ1, σ2) ≥ u1(σ′
1, σ2)}

A strategy profile σ consists of a strategy for each player
in the game; i.e., (σ1, σ2). In the special case where
σ1 ∈ BR(σ2) and σ2 ∈ BR(σ1), we refer to σ as a Nash
equilibrium. A zero-sum extensive game is an extensive
game where u1 = −u2 (one player’s gains are equal to
the other player’s losses). In such games, all Nash equilib-
rium strategies have the same utility for the players, and we
refer to this as the value of the game. We define the term
exploitability to refer to the difference between a strategy’s
utility when playing against its best-response and the value
of the game for that player. We define exploitation to re-
fer to the difference in utility between one strategy’s utility
against a specific opponent strategy and the value of the
game for that player.

A strategy that can be exploited for no more than ε is
called ε-safe, and is a member of the set of ε-safe strate-
gies Σε-safe

1 ⊆ Σ1. A strategy profile where each strat-
egy can be exploited by no more than ε is called an ε-
Nash equilibrium. Given the set Σε-safe

1 , there is a sub-
set BRε-safe(σ2) ⊆ Σε-safe

1 that contains the strategies that
maximize utility against σ2:

BRε-safe(σ2) = { σ1 ∈ Σε-safe :
∀σ′

1 ∈ Σε-safeu1(σ1, σ2) ≥ u1(σ′
1, σ2)}

3 Texas Hold’em Poker

Heads-Up Limit Texas Hold’em poker is a two-player
wagering card game. In addition to being commonly
played in casinos (both online and in real life), it is also
the main event of the AAAI Computer Poker Competi-
tion [Zinkevich and Littman, 2006], an initiative to foster
research into AI for imperfect information games. Texas
Hold’em is a very large zero-sum extensive form game
with imperfect information (the opponent’s cards are hid-
den) and stochastic elements (cards are dealt at random).
Each individual game is short, and players typically play a
session of many games.

We will briefly summarize the rules of the game. A ses-
sion starts with each player having some number of chips,
which usually represent money. A single game of Heads-
Up Limit Texas Hold’em consists of each player being
forced to place a small number of chips (called a blind)
into the pot before being dealt two private cards. The play-
ers will combine these private cards with five public cards



that are revealed as the game progresses. The game has
four phases: the preflop (when two private cards are dealt),
the flop (when three public cards are dealt), the turn (when
one public card is dealt) and the river (when one final pub-
lic card is dealt). If both players reach the end of the game
(called a showdown), then both players reveal their private
cards and the player with the best 5-card poker hand wins
all of the chips in the pot. If only one player remains in the
game, then that player wins the pot without revealing their
cards. After the cards are dealt in each phase, the players
engage in a round of betting, where they bet by placing
additional chips in the pot that their opponent must match
or exceed in order to remain in the game. To do this, the
players alternate turns and take one of three actions. They
may fold to exit the game and let the opponent win, call to
match the opponent’s chips in the pot, or raise to match,
and then add a fixed number of additional chips (the “bet”
amount). When both players have called, the round of bet-
ting is over, and no more than four bets are allowed in a
single round.

The goal is to win as much money as possible from the op-
ponent by the end of the session. This distinguishes poker
from games such as Chess or Checkers where the goal is
simply to win and the magnitude of the win is not mea-
sured. The performance of an agent is measured by the
number of bet amounts (or just bets) they win per game
across a session. Between strong computer agents, this
number can be small, so we present the performance in mil-
libets per game (mb/g), where a millibet is one thousandth
of a bet. A player that always folds will lose 750 millibets
per game to their opponent, and a strong player can hope
to win 50 millibets per game from their opponent. Due to
a standard deviation of approximately 6000 millibets per
game, it can take more than one million games to distin-
guish with 95% confidence a difference of 10 millibets per
game.

Since the goal of the game is to maximize the exploita-
tion of one’s opponent, the game emphasizes the role
of exploitive strategies as opposed to equilibrium strate-
gies. In the two most recent years of the AAAI Computer
Poker Competition, the “Bankroll” event which rewards
exploitive play has been won by agents that lost to some op-
ponents, but won enough money from the weakest agents to
have the highest total winnings. However, many of the top
agents have been designed to take advantage of a suspected
a priori weakness common to many opponents. A more
promising approach is to observe an opponent playing for
some fixed number of games, and use these observations
to create a counter-strategy that exploits the opponent for
more money than a baseline Nash equilibrium strategy or a
strategy that exploits some expected weaknesses.

Abstraction. The variant of poker described above has
9.17 × 1017 game states; computing best responses and

Nash equilibria in a game of this size is intractable. There-
fore, it is common practise to instead reduce the real game
to a much smaller abstract game that maintains as many of
the strategic properties as possible. The strategies of inter-
est to us will be computed in this abstract game. To use the
abstract game strategy to play the real game, we will map
the current real game information set to an abstract game
information set, and choose the action specified by the ab-
stract game strategy.

The game is abstracted by merging information sets that
result from similar chance outcomes. On the preflop, one
such abstraction might reduce the number of chance out-
comes from 52 choose 2 down to 5, and from (52 choose
2)(50 choose 3) to 25 on the flop. Each chance out-
come is reduced to one of 5 outcomes, giving 625 possi-
ble combinations, resulting in a game that has 6.45 × 109

game states. In this abstract game, best response counter-
strategies can be computed in time linear in the size of
the game tree; on modern hardware, this takes roughly 10
minutes. Using recent advances for solving extensive form
games [Zinkevich et al., 2008], a Nash equilibrium for this
abstract game can be approximated to within 3 millibets
per game in under 10 hours.

Opponent strategies. Much of the recent effort
towards creating strong agents for Texas Hold’em
has focused on finding Nash equilibrium strate-
gies for abstract games [Zinkevich et al., 2008,
Gilpin and Sandholm, 2006]. We want to examine
the ability to exploit opponent weaknesses, so we will
examine results where the opponent is not playing an
equilibrium strategy. Toward this end, we created an agent
similar to “Orange”, which was designed to be overly
aggressive but still near equilibrium and competed in the
First Man-Machine Poker Championship [Johanson, 2007,
p. 82],. “Orange” is a strategy for an abstract non-zero-sum
poker game where the winner gets 7% more than usual,
while the loser pays the normal price. When this strategy
is used to play the normal (still abstract) zero-sum game
of poker, it is exploitable for 28 millibets per game. This
value is the upper bound on the performance obtainable by
any counter-strategy that plays in the same abstraction.

In this paper, we will also refer to an agent called
“Probe” [Johanson et al., 2008]. Probe is a trivial agent
that never folds, and calls and raises whenever legal with
equal probability. The Probe agent is useful for collecting
observations about an opponent’s strategy, since it forces
them into all of the parts of the game tree that the opponent
will consent to reach.

Opponent Beliefs. A belief about the opponent’s current
strategy can simply be encoded as a strategy itself. Even a
posterior belief derived from a complicated prior and many
observations still can be summarized as a single function



mapping an information set to a distribution over actions,
the expected posterior strategy1. In this work, we will
mainly take a frequentist approach to observations of the
opponent’s actions (although we discuss a Bayesian inter-
pretation to our approach in Section 7). Each observation
is one full information game of poker: both players’ cards
are revealed. The model of our opponent will consider all
of the information sets in which we have observed the op-
ponent acting. The probability of the opponent model tak-
ing an action a in such an information set I is then set to
the ratio of the number of observations of the opponent
playing a in I to the number of observations of I . There
will likely be information sets in which we have never ob-
served the opponent acting. For such information sets, we
establish a default policy to always choose the call ac-
tion [Johanson, 2007, p. 60]2

Since our opponent model is itself a strategy, it can be
used to play against the counter-strategies that are de-
signed to exploit it. We would expect the counter-
strategies to perform very well in such cases, and this is
demonstrated in our previous work on restricted Nash re-
sponses [Johanson et al., 2008]. However, since the model
is constructed only from (possibly a small number) obser-
vations of the opponent’s strategy, it is more interesting to
examine how the counter-strategies perform against the ac-
tual opponent’s strategy.

4 Limitations of Current Methods

As discussed in the introduction, restricted Nash response
counter-strategies form an envelope of possible counter-
strategies to use against the opponent, assuming the op-
ponent model is correct [Johanson et al., 2008]. The re-
stricted Nash response technique was designed to solve the
brittleness of best response strategies. As was presented
in Table 1 of that work, best response strategies perform
well against their intended opponent, but they can per-
form very badly against other opponents, and are highly
exploitable by a worst-case opponent. Restricted Nash re-
sponse strategies are robust, and any new technique for pro-
ducing counter-strategies should also be able to produce ro-
bust strategies. However, restricted Nash response strate-
gies have three limitations. We will show that our new
counter-strategy technique addresses these issues.

Before discussing the limitations, we first explain
the exploitability-versus-exploitation graph that is used
throughout the paper. For each counter-strategy, we can
measure the exploitability (worst-case performance) and
exploitation (performance against a specific opponent). So

1If f : Σ2 → < is the posterior density function over strate-
gies, then the expected posterior strategy chooses action a at infor-
mation set I with probability σ̄1(I, a) =

R
σ1∈Σ1

σ1(I, a)f(σ1)
2Alternative default policies were tried in this previous work,

but all performed far inferior.

we can plot any counter-strategy as a point on a graph with
these axes. Restricted Nash responses involve a family of
counter-strategies attained by varying p. Hence, we plot
a curve passing through a set of representative p-values to
demonstrate the shape of the envelope of strategies. Since
the exploitability is determined by the choice of p, we
are (indirectly) controlling the exploitability of the result-
ing counter-strategy, and so it appears on the x-axis; the
counter-strategy’s exploitation of the specific opponent is
the result, and is shown on the y-axis. In each of the fol-
lowing graphs, the values of p used were 0, 0.5, 0.7, 0.8,
0.9, 0.93, 0.97, 0.99, and 1. Each value of p corresponds
to one datapoint on each curve. Unless otherwise stated,
each set of counter-strategies was produced with 1 million
observed games of Orange playing against Probe.

Restricted Nash response counter-strategies can over-
fit to the model. By varying p, the resulting restricted
Nash response counter-strategies each present a different
tradeoff of exploitation and exploitability when compared
against their opponent model. As p increases, the counter-
strategies exploit the opponent model to a higher degree,
and are themselves more exploitable. However, as Fig-
ure 1a shows, this trend does not hold when we compare
their performance against the actual opponent instead of
the opponent model. As p increases, the counter-strategies
begin to do markedly worse against the actual Orange strat-
egy. The computed counter-strategy has overfit to the op-
ponent model. As the number of observations approach the
limit, the opponent model will perfectly match the actual
opponent in the reachable part of the game tree, and this
effect will lessen. In a practical setting, however, p must
be chosen with care so that the resulting counter-strategies
provide favourable trade-offs.

Restricted Nash response counter-strategies require a
large quantity of observations. It is intuitive that, as any
technique is given more observations of an opponent, the
counter-strategies produced will grow in strength. This is
true of the restricted Nash response technique. However, if
there is not a sufficient quantity of observations, increasing
p can make the resulting counter-strategies worse than the
equilibrium strategy. This is another aspect of the restricted
Nash response technique’s capacity to overfit the model;
if there is an insufficient number of observations, then the
default policy plays a larger part of the model’s strategy and
the resulting counter-strategy is less applicable to the actual
opponent. Figure 1b shows this effect. With less than 100
thousand observed games, increasing p causes the counter-
strategies to be both more exploitable and less exploitive.

Restricted Nash response counter-strategies are sensi-
tive to the choice of training opponent. Ideally, a tech-
nique for creating counter-strategies based on observations
should be able to accept any reasonably diverse set of ob-
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Figure 1: Exploitation versus exploitability curves that il-
lustrate three problems in the restricted Nash response tech-
nique. In 1a, we note the difference in performance when
counter-strategies play against the opponent model and
against the actual opponent. In 1b, we see how a scarcity
of observations results in poor counter-strategies. In 1c, we
see that the technique performs poorly when self-play data
is used. Note that the red, solid curve is the same in each
graph.

servations as input. However, the restricted Nash response
technique requires a very particular set of observations in
order to perform well. Figure 1c shows the performance of
two sets of restricted Nash response counter-strategies. The
set labelled Probe uses an opponent model that observed
one million games of Orange playing against Probe; the set
labelled Self-Play uses an opponent model that observed
one million games of Orange playing against itself. One
might think that a model constructed from self-play obser-
vations would be ideal, because it would be accurate in the
parts of the game tree that the opponent is likely to reach.
Instead, we find that self-play data is of no use when con-
structing a restricted Nash response counter-strategy. If an
agent will not play to reach some part of the game tree, then
the opponent model has no observations of the opponent in
that part of the tree, and is forced to turn to the default
policy which may be very dissimilar from the actual oppo-
nent’s strategy. The Probe agent forces the the opponent to
play into all of the parts of the tree reachable because of the
opponent’s strategy, however, and thus the default policy is
used less often.

5 Data Biased Response

The guiding idea behind the restricted Nash response tech-
nique is that the opponent model may not be perfect. The
parameter p can be thought of as a measure of confidence
in the model’s accuracy. Since the opponent model is based
on observations of the opponent’s actions, there can be two
types of flaws in the opponent model. First, there may be
information sets in which we never observed the opponent,
and so the opponent model must provide a default policy
to be taken at this information set. Second, in information
sets for which there were a small number of observations,
the observed frequency of actions may not match the true
opponent’s action probabilities.

We claim that the restricted Nash response technique’s se-
lection of one parameter, p, is not an accurate representa-
tion of the problem, because the accuracy of the opponent
model is not uniform across all of the reachable informa-
tion sets. Consider the two cases described above. First,
in unobserved information sets, the opponent model uses
the default policy and is unlikely to accurately reflect the
opponent’s strategy. If we could select a value of p for just
this information set, then p would be 0. Second, the num-
ber of observations of a particular information set will vary
wildly across the game tree. In information sets close to
the root, we are likely to have many observations, and so
we expect the model to be accurate. In information sets
that are far from the root, we will tend to have fewer ob-
servations, and so we expect the model to be less accurate.
If we were selecting a value of p for one information set,
it should depend on how accurate we expect the model to
be; one measure of this is the number of times we have
observed the opponent acting in this information set.



This is the essential difference between the restricted Nash
response technique and the data biased response technique.
Instead of choosing one probability p that reflects the ac-
curacy of the entire opponent model, we will assign one
probability to each information set I and call this mapping
Pconf . We will then create a modified game in the follow-
ing way. Whenever the restricted player reaches I , they will
be forced to play according to the model with probability
Pconf(I), and can choose their actions freely with probabil-
ity (1 − Pconf(I)). The other player has no restrictions on
their actions. When we solve this modified game, the unre-
stricted player’s strategy becomes a robust counter-strategy
to the model.

One setting for Pconf is noteworthy. If Pconf(I) is set to
0 for some information sets, then the opponent model is
not used at all and the player is free to use any strategy.
However, since we are solving the game, this means that
we assume a worst-case opponent and essentially compute
a Nash equilibrium in these subgames.

5.1 Solving the Game

Given an opponent model σfix and Pconf , the restricted
player chooses a strategy σ′

2 that makes up part of their re-
stricted strategy σ2. The resulting probability of σ2 taking
action a at information set I is given as:
σ2(I, a) = Pconf(I)×σfix(I, a)+(1−Pconf(I))×σ′

2(I, a)
(1)

Define ΣPconf ,σfix
2 to be the set of strategies for the restricted

player, given the possible settings of σ′
2. Among this set

of strategies, we can define the subset of best responses to
an opponent strategy σ1, BRPconf ,σfix(σ1) ⊆ ΣPconf ,σfix

2 .
Solving a game with the opponent restricted accordingly,
finds a strategy profile (σ∗

1 , σ∗
2) that is a restricted equilib-

rium, where σ∗
1 ∈ BR(σ∗

2) and σ∗
2 ∈ BRPconf ,σfix(σ1).

In this pair, the strategy σ∗
1 is a Pconf -restricted Nash re-

sponse to the opponent model σfix, which we call a data
biased response counter-strategy.

5.2 Choosing Pconf

We will now present four ways in which Pconf can be cho-
sen, all of which have two aspects in common. First, each
approach sets Pconf(I) for an information set I as a func-
tion of the number of observations we have of the opponent
acting in information set I , nI . As the number of observa-
tions of our opponent acting in I increase, we will become
more confident in the model’s accuracy. If nI = 0, then we
set Pconf(I) to zero, indicating that we have no confidence
in the model’s prediction. Note that this choice in setting
Pconf removes the need for a default policy. As mentioned
in Section 5, this means the restricted player will become a
worst-case opponent in any information sets for which we
have no observations. Second, each approach accepts an
additional parameter Pmax ∈ [0, 1], which acts in a similar

fashion to p in the restricted Nash response technique. It
is used to set a maximum confidence for Pconf . Varying
Pmax in the range [0, 1] allows us to set a tradeoff between
exploitation and exploitability, while nI indicates places
where our opponent model should not be trusted.

Removing the default strategy. First, we consider a sim-
ple choice of Pconf , which we call the 1-Step function. In
information sets where we have never observed the op-
ponent, Pconf returns 0; otherwise, it returns Pmax. This
choice of Pconf allows us to isolate the modelling error
caused by the default policy from the error caused by the
opponent model’s action probabilities not matching the ac-
tion probabilities of the actual opponent.

Requiring more observations. Second, we consider an-
other simple choice of Pconf , which we call the 10-Step
function. In information sets where we have observed the
opponent fewer than 10 times, Pconf returns 0; otherwise,
it returns Pmax. Thus, it is simply a step function that re-
quires ten observations before expressing any confidence in
the model’s accuracy.

Linear confidence functions. Third, we consider a mid-
dle ground between our two step functions. The 0-10 Lin-
ear function returns Pmax if nI > 10 and (nI × Pmax)/10
otherwise. Thus, as we obtain more observations, the func-
tion expresses more confidence in the accuracy of the op-
ponent model.

Curve confidence functions. Fourth, we consider a set-
ting of Pconf with a Bayesian interpretation. The s-Curve
function returns Pmax × (nI/(s + nI)) for any constant
s; in this experiment, we used s = 1. Thus, as we ob-
tain more observations, the function approaches Pmax. The
foundation for this choice of Pconf is explained further in
Section 7.

6 Results

In Section 3, we presented three problems with restricted
Nash response strategies. In this section, we will revisit
these three problems and show that data biased response
counter-strategies overcome these weaknesses. In each ex-
periment, the sets of restricted Nash response and data bi-
ased response counter-strategies were created with p and
Pmax (respectively) parameters of 0, 0.5, 0.7, 0.8, 0.9, 0.93,
0.97, 0.99, and 1. Unless otherwise stated, each set of
counter-strategies was produced with 1 million observed
games of Orange playing against Probe.

Overfitting to the model. We begin with the problem of
overfitting to the model. Figure 2a shows the results of
sets of restricted Nash response and 1-Step, 10-Step and
0-1 Linear data biased response counter-strategies playing
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Figure 2: Exploitation versus exploitability curves for data
biased response counter-strategies. 2a shows that restricted
Nash and 1-Step counter-strategies overfit the model, while
10-Step, 0-10 Linear, and 1-Curve counter-strategies do
not. 2b shows that the 0-10 Linear counter-strategies are
effective with any quantity of training data. 2c shows that
the 0-10 Linear counter-strategies can accept any type of
training data. Note that the red, solid curve is the same in
each graph.

against Orange and the opponent model of Orange. Two
of the results are noteworthy. First, we observe that the
set of 1-Step data biased response counter-strategies overfit
the model. Since the 1-Step data biased response counter-
strategies did not use the default policy, this shows us that
the error caused by the opponent model’s action probabil-
ities not agreeing with the actual opponent’s action proba-
bilities is a nontrivial problem and that the default policy
is not the only weakness. Second, we notice that the 0-10
Linear, 10-Step and 1-Curve data biased response counter-
strategies do not overfit the opponent model, even at the
last datapoint where Pmax is set to 1.

Quantity of observations. Next, we examine the prob-
lem of the quantity of observations necessary to produce
useful counter-strategies. In Figure 1b, we showed that
with insufficient quantities of observations, restricted Nash
counter-strategies not only did not exploit the opponent but
in fact performed worse than a Nash equilibrium strategy
(which makes no attempt to exploit the opponent). In Fig-
ure 2b, we show that the 0-10 Linear data biased response
counter-strategies perform well, regardless of the quantity
of observations provided. While the improvement in ex-
ploitation from having 100 or 1000 observations is very
small, for Pmax < 1 the counter-strategies became only
marginally more exploitable. This is a marked difference
from the restricted Nash response results in Figure 1b.

Source of observations. Finally, we consider the prob-
lem of the source of the observations used to create the
model. In Figure 1c, we showed that the restricted Nash
response technique required observations of the opponent
playing against an opponent such as Probe in order to
create useful counter-strategies. In Figure 2c, we show
that while the data biased response counter-strategies pro-
duced are more effective when the opponent model ob-
serves games against Probe, the technique does still pro-
duce useful counter-strategies when provided with self-
play data.

7 Discussion

We motivated data biased responses by noting that the con-
fidence in our model is not uniform over all information
sets, and suggesting p should be some increasing function
of the number of observations at a particular information
set. We can give an alternative motivation for this approach
by considering the framework of Bayesian decision mak-
ing. In the Bayesian framework we choose a prior den-
sity function (f : Σ2 → <) over the unknown opponent’s
strategy. Given observations of the opponent’s decisions
Z we can talk about the posterior probability Pr(σ2|Z, f).
If only one more hand is to be played, decision theory in-
structs us to maximize our expected utility given our be-



liefs.

argmax
σ1

∫
σ2∈Σ2

u1(σ1, σ2) Pr(σ2|Z, f) (2)

Since utility is linear in the sequence form representation of
strategy, we can move the integral inside the utility function
allowing us to solve the optimization as the best-response
to the expected posterior strategy (see Footnote 1).

However, instead of choosing a single prior density, sup-
pose we choose a set of priors (F ), and we want to play
a strategy that would have large utility for anything in this
set. A traditional Bayesian approach might require us to
specify our uncertainty over priors from this set, and then
maximize expected utility given such a hierarchical prior.
Suppose, though, that we have no basis for specifying such
a distribution over distributions. An alternative then is to
maximize utility in the worst case.

argmax
σ1

min
f∈F

∫
σ2∈Σ2

u1(σ1, σ2) Pr(σ2|Z, f) (3)

In other words, employ a strategy that is robust to the
choice of prior. Notice that if F contains a singleton prior,
this optimization is equivalent to the original decision the-
oretic approach, i.e., a best response strategy. If F con-
tains all possible prior distributions, then the optimization
is identical to the game theoretic approach, i.e., a Nash
equilibrium strategy. Other choices of the set F admit op-
timizations that trade-off exploiting data with avoiding ex-
ploitation.

Theorem 1 Consider F to be the set of priors composed
of independent Dirichlet distributions for each information
set, where the strength (sum of the Dirichlet parameters) is
at most s. The strategy computed by data biased response
when Pconf(I) = nI/(s + nI) is the solution to the opti-
mization in 3.

PROOF. (Sketch) If we let Σs
2 be the set of resulting ex-

pected posterior strategies for all choices of priors f ∈ F .
It suffices to show that Σs

2 = ΣPconf ,σfix . For any prior
f ∈ F , let αf

I,a be the Dirichlet weight for the outcome
a at information set I . Let σfix(I, a) = αf

I,a/
∑

a′ αf
I,a′ ,

in other words the strategy where the opponent plays the
expected prior strategy when given the opportunity. The
resulting expected posterior strategy is the the same as σ2

from Equation 1 and so is in the set ΣPconf ,σfix . Similarly,
given σfix associated with a strategy σ2 in ΣPconf ,σfix , let
αI,a = sσfix(I, a). The resulting expected posterior strat-
egy is the same as σ2. The available strategies to player 2
are equivalent, and so the resulting min-max optimizations
are equivalent.

In summary, we can choose Pconf in data biased response
so that it is equivalent to finding strategies that are robust
to a set of independent Dirichlet priors.

8 Conclusion

The problem of exploiting information about a suspected
tendency in an environment while minimizing worst-case
performance occurs in several domains, and becomes more
difficult when the information may be limited or inaccurate.
We reviewed restricted Nash response counter-strategies, a
recent work on the opponent modelling interpretation of
this problem in the Poker domain, and highlighted three
shortcomings in that approach. We proposed a new tech-
nique, data biased responses, for generating robust counter-
strategies that provide good compromises between exploit-
ing a tendency and limiting the worst case exploitability
of the resulting counter-strategy. We demonstrated that the
new technique avoids the three shortcomings of existing
approaches, while providing better performance in the most
favourable conditions for the existing approaches.
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