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Abstract

Perfect recall is the common and natural assumption that an
agent never forgets. As a consequence, the agent can always
condition its choice of action on any prior observations. In
this paper, we explore relaxing this assumption. We observe
the negative impact this relaxation has on algorithms: some
algorithms are no longer well-defined, while others lose their
theoretical guarantees on the quality of a solution. Despite
these disadvantages, we show that removing this restriction
can provide considerable empirical advantages when model-
ing extremely large extensive games. In particular, it allows
fine granularity of the most relevant observations without re-
quiring decisions to be contingent on all past observations. In
the domain of poker, this improvement enables new types of
information to be used in the abstraction. By making use of
imperfect recall and new types of information, our poker pro-
gram was able to win the limit equilibrium event as well as
the no-limit event at the 2008 AAAI Computer Poker Com-
petition. We show experimental results to verify that our pro-
grams using imperfect recall are indeed stronger than their
perfect recall counterparts.

Introduction
Perfect recall is the assumption that the rules of the game
never require a player to forget her own past actions or any
prior observations when making those actions. Kuhn 1953
first formalized the perfect recall assumption in a land-
mark work that showed the equivalence between behavioral
strategies (where players randomize their strategies at choice
points) and mixed strategies (where players randomize their
strategies prior to playing) in any game exhibiting perfect
recall. This equivalence allowed all of the theory of normal-
form games to be applied to extensive games with perfect
recall. For the next forty years, imperfect recall games
were relegated to “awkward exceptions” (Ambrus-Lakatos
1999). Piccione and Rubinstein 1996 sparked a revival of
interest in imperfect recall with their paradox of the absent-
minded driver. This initial work and the resulting flurry of
responses (e.g., (Gilboa 1997; Piccione & Rubinstein 1997;
Ambrus-Lakatos 1999)) focused mostly on the interpreta-
tion of imperfect recall: when and how players make deci-
sions and with what knowledge. These works also showed
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how strange behaviour can arise in certain games of imper-
fect recall.

In this paper, we examine the computational, rather than
philosophical, implications of imperfect recall. From the
perspective of artificial intelligence, imperfect recall is more
than just a modeling choice to describe a strategic interac-
tion. Imperfect recall can be used to limit the space and
size of strategies under consideration with the goal of re-
ducing the computational burden of constructing an effec-
tive strategy. Consider a perfect recall strategy for heads-up
Texas Hold’em. This game has 1018 game states with each
player having 1014 information sets, requiring petabytes
of disk space to even store a strategy. To compute ef-
fective strategies in games of this size, typically one first
employs an abstraction technique (Billings et al. 2003;
Gilpin & Sandholm 2006; 2007) to create a much smaller
game. To date, only abstractions that preserve perfect recall
have been considered, but the ability to forget allows more
flexibility when designing an abstract game. An abstraction
can allow more granularity of information at early decisions
if this information does not need to be recalled at every later
decision point.

Unfortunately, relaxing the perfect recall assumption re-
sults in the loss of most of the useful theoretical properties
that resulted from Kuhn’s work. A variety of issues arise
with the efficient algorithms for finding equilibria without
this assumption. Algorithms based on sequence form rep-
resentations cease to be well-defined. Regret-based algo-
rithms, while remaining well-defined for a large class of im-
perfect recall games, apparently lose their theoretical guar-
antees. Despite the loss of these guarantees, we forge ahead
using a variant of the counterfactual regret algorithm (Zinke-
vich et al. 2008) to construct strategies based on imperfect
recall abstractions in two intractable variants of poker. We
show that the conceptual advantages of imperfect recall hold
in practice and, despite the theoretical problems, the result-
ing strategies outperform their perfect recall counterparts.

Background
An extensive game is a useful tool for modeling how mul-
tiple agents interact with an environment. At each step a
player or chance takes an action as the game progresses
towards a terminal history. At a terminal history, players
are rewarded or penalized based on the terminal that was



reached. To incorporate imperfect information, not all ac-
tions are fully observable to each player. This results in cer-
tain histories being indistinguishable to a player when she is
faced with a decision.

Definition 1 (Extensive Game) (Osborne & Rubenstein
1994, p. 200) A finite extensive game with imperfect infor-
mation, Γ, has the following components:

• A finite set N of players.
• A finite set H of sequences, the possible histories of ac-

tions, such that the empty sequence is in H and every pre-
fix of a sequence in H is also in H . Z ⊆ H are the ter-
minal histories. No action can be taken from a terminal
history and hence a terminal history is not a prefix of any
other history. A(h) = {a : h ◦ a ∈ H} are the actions
available after a non-terminal history h ∈ H \ Z.

• A player function P that assigns to each non-terminal
history a member of N ∪ {c}, where c represents chance.
P (h) is the player who takes an action after the history
h. If P (h) = c, then chance determines the action taken
after history h. Let Hi be the set of histories where player
i chooses the next action.

• A function fc that associates with every history h ∈ Hc a
probability measure fc(·|h) on A(h). fc(a|h) is the prob-
ability that a occurs given history h is reached, where
each such probability measure is independent of every
other such measure.

• For each player i ∈ N , a partition Ii of Hi with the prop-
erty that A(h) = A(h′) = A(I) whenever h and h′ are in
the same member of the partition, I . Ii is the information
partition of player i; a set I ∈ Ii is an information set of
player i.

• For each player i ∈ N , a utility function ui that assigns
each terminal history a real value. ui(z) is rewarded to
player i for reaching terminal history z. If N = {1, 2}
and for all z, u1(z) = −u2(z), an extensive form game is
said to be zero-sum.

Two histories belonging to the same information set are in-
distinguishable to the acting player. Thus, the player cannot
condition her choice of action on anything other than the
information set that contains that history. This can lead to
awkward and unnatural games where a player is forced to
forget (i.e., not be able to condition her action on) infor-
mation that she previously knew. Games that display this
behaviour are thought of as oddities, unnecessarily difficult,
and usually dismissed. Typically, perfect recall is assumed,
which is a condition on the information partitions to exclude
these situations. A game exhibits perfect recall if from any
information set a player can determine her own past infor-
mation sets as well as the action taken from those informa-
tion sets. This condition is satisfied only when all histories
in an information set share the same past information sets
and same past actions for the acting player. A game is said
to exhibit imperfect recall if this condition does not hold.

When playing an extensive game, we call the mechanism
that a player uses to make her decisions a strategy. Similarly,
we call the combination of all player’s strategies a strategy
profile.

Definition 2 (Strategy) We call σi ∈ Σi a strategy for
player i. σi(·|I) defines a probability distribution on A(I)
for all I ∈ Ii. Upon reaching a history in I , player i samples
an action from σi(·|I) and then plays the sampled action.

Definition 3 (Strategy Profile) We call σ ∈ Σ a strategy
profile. It contains one strategy for each player. We denote
σ−i as the profile containing all strategies except for player
i’s. We define ui(σ) as the expected utility of player i given
that all players play according to σ.

A natural solution concept for an extensive game is the
Nash Equilibrium. A strategy profile is at equilibrium if no
player can benefit by deviating his or her strategy from the
one given in the profile. A strategy profile is said to be near
equilibrium if any player’s incentive to deviate is marginal.
Definition 4 (Equilibrium) A Nash Equilibrium is a strat-
egy profile, σ, such that for all i ∈ N,σ′i ∈ Σi:

ui(σ) ≥ ui(σ−i ∪ σ′i) (1)

An ε-Nash Equilibrium is a strategy profile σ such that for
all i ∈ N and σ′i ∈ Σi:

ui(σ) + ε ≥ ui(σ−i ∪ σ′i) (2)

For zero-sum games, there exists efficient procedures for
computing ε-equilibrium profiles, such as linear program-
ming using sequence form (Koller, Megiddo, & Stengel
1996), counterfactual regret minimization (Zinkevich et al.
2008) and gradient-based methods (Gilpin et al. 2007). In a
zero-sum game, playing a strategy belonging to an equilib-
rium profile maximizes a player’s worst-case expected util-
ity.

Chance Sampled Counterfactual Regret
Minimization
One efficient algorithm for computing a ε-equilibrium in a
zero-sum game with perfect recall is the chance sampled
counterfactual regret minimization algorithm. This algo-
rithm is quite easy to implement, and with high probability
will converge to an equilibrium profile as the number of it-
erations increases. The algorithm is detailed more fully in
Zinkevich et al. 2008, but we shall review it here for com-
pleteness.

First, a few definitions. We let πσ(h) be the probability
that history h is reached given that all players play accord-
ing to σ. Similarly, we can define πσ

i (h) as the the por-
tion of πσ(h) resulting from player i’s actions and πσ

−i(h)
as the portion resulting from the actions of all players (and
chance) except for player i. Similar constructs of the form
πσ
∗ (h, h′) are defined as ∗’s contribution to the probability

of reaching h′ given that h is reached. Given these defi-
nitions, we let πσ

∗ (I) =
∑

h∈I πσ
∗ (h) be ∗’s contribution

to the probability of reaching information set I . We let
ui(σ, I) be the counterfactual utility for player i at infor-
mation set I . That is, ui(σ, I) is the expected utility for
player i given that information set I is reached and all play-
ers play according to σ afterwards. Mathematically, we have
ui(σ, I) =

∑
h∈I,z∈Z πσ

−i(h)πσ(h, z)ui(z). One final bit
of notation we will need is that σ|I→a denotes the strategy



profile where at information set I action a is chosen and at
all other information sets the action is chosen according to
σ.

As we proceed through iterations of the algorithm, we will
have to keep track of some information. The first of which
we denote σT , the current strategy profile at time T . We set
σ0 to be an arbitrary strategy profile. For each iteration start-
ing with T = 1, we will use the previous iteration’s strategy
profile, along with some accumulated regret information, to
compute a new strategy profile. The average of all these
strategy profiles, σ̄T , is also maintained. Ultimately, it is σ̄T

that converges to a ε-equilibrium. The regret information we
need is RT

i (I, a), which denotes the counterfactual regret up
to time T on action a at information set I experienced by
player i. That is, this quantity is how much counterfactual
utility player i would have gained from only playing action
a at information set I , as opposed to playing her regret min-
imizing strategy, had she played to reach information set I
and her opponent played according to the most recent strat-
egy profile. Initially, we set R0

i (I, a) = 0 for all information
sets and actions.

On each iteration, we first update the counterfactual regret
information and then compute a new strategy profile using
the updated regret totals. The counterfactual regret is up-
dated using the following formula:

RT
i (I, a) = RT−1

i (I, a) + ui(σT−1|I→a)− ui(σT−1, I)
(3)

We use the well-known regret matching equation, which re-
lies on Blackwell’s approachability theorem, to update the
strategy profile as follows:

σT (a|I) =
max{0, RT

i (I, a)}∑
a∈A(I) max{0, RT

i (I, a)}
(4)

This update procedure ensures that the counter-factual regret
at each information set decreases to zero. As these regret
terms bound the overall regret, it too approaches zero as the
number of completed iterations increases.

What is described above is the standard couterfactual re-
gret minimizing algorithm. To convert this algorithm to the
chance sampled variant, all we must do is randomly sam-
ple chance’s strategy at each iteration. All the probabili-
ties in the updates are then replaced with the corresponding
probabilities where chance plays according to the sampled
strategy. Given this change, the average strategy profile ap-
proaches an equilibrium with high probability. This change
can drastically effect the performance of the algorithm as in
certain games, such as many poker variants, the computation
required on for iteration is dramatically simplified.

Motivation for Imperfect Recall
Many games of interest to the artificial intelligence commu-
nity, though exhibiting perfect recall, are far too large to fea-
sibly compute an equilibrium profile. As noted in the intro-
duction, two-player limit Texas Hold’em has approximately
1018 game states and would require petabytes of memory to
record a strategy. In two-player no-limit Texas Hold’em,
there are many more actions available to the players, in-
creasing the number of game states to approximately 1071.

State-of-the-art techniques for finding equilibria cannot han-
dle games of this size. In order to make use of game the-
oretic approaches for computing strategies in these games,
we must make use of abstraction techniques (Billings et al.
2003; Gilpin & Sandholm 2007). These approaches create
a smaller abstract game that we hope accurately models the
original game. An abstraction technique reduces the amount
of information available to a player at a decision point. Com-
monly, this is done by further obscuring chance’s actions,
i.e., some of chance’s actions that in the original game are
distinguishable to a player are grouped together so that they
no longer are distinguishable in the abstract game. Once the
abstract game is created, we can then use modern techniques
to solve for an ε-equilibrium in this smaller game and use
the resulting strategies to play the original game. The hope
is that the error introduced by abstraction is not too large
and therefore the induced strategy for the original game is
of suitable quality. Prior to this work, the smaller abstract
games have always exhibited perfect recall.

Although exclusively used, perfect recall can be trouble-
some when creating abstract games. Early in the game,
an agent may be forced to have inadequate information to
make an informed decision because the agent would have
to remember the information for the remainder of the game.
Often including enough information in the abstract game to
properly make these decision would increase the size of the
abstract game beyond what can be solved. Later in the game,
much of the information available to the player is what has
been remembered from past actions. Some of the past in-
formation may still be relevant, but often is it less important
than the most recent information. Here, the less relevant in-
formation is in a sense taking the space of information that
could be more useful in making a decision. We can visual-
ize these problems in Figure 1. Here, the information avail-
able to a player (shown horizontally) on consecutive rounds
(shown vertically) is represented as the sum of the player’s
past actions (denoted P) and as chance’s abstracted actions
(denoted 1, 2 and 3). The bulk of the strategy space in many
games is occupied by decisions made late in the game, which
is after chance has taken multiple actions. Since this space is
limited, we must appropriately size chance’s initial actions
as they are remembered through the entire game.

P

1

1

1 2

2

P

3 P

Figure 1: Information in an Abstract Perfect Recall Game

Using imperfect recall when creating abstract games al-
lows us to alleviate these problems to some degree. At a
decision, we can focus the information available to an agent
on the most relevant information. At later decisions, we can
either choose to forget past information (which was once rel-
evant) or modify its granularity to what is deemed an accept-



able level. This allows us more flexibility in choosing an ab-
stract game. Additionally, it allows us to take further advan-
tage of domain knowledge and provide what is believed to
be the most relevant information to the agent when it makes
its decision. We see this contrast visually in Figure 2.
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1 2
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P
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Figure 2: Information in an Abstract Imperfect Recall Game

Challenges of Imperfect Recall
Though imperfect recall seems advantageous from a model-
ing standpoint, many computational issues arise when faced
with games of imperfect recall.

Conceptual Challenges. Consider the zero-sum game in
Figure 3. In this two player game, the first player chooses
a direction initially, left or right, and tells this direction to
the second player. The second player then decides whether
she wishes to continue playing the game, or to abstain from
playing. Abstaining from play results in her receiving a
penalty. If she decides to proceed, her memory is erased
of the direction chosen by the first player. She must then re-
peat which direction was picked in the beginning. Answer-
ing this question correctly gives her a small reward, where
answering incorrectly is penalized heavily. There are two
simple strategies in this game where she will never answer
incorrectly. The first is to abstain always when left is picked
and to play and answer right otherwise. The second is the
symmetric strategy where the player abstains when right is
picked. Interestingly, if she is rational and privileged to the
first player’s strategy, she will always pick one of these two
strategies to maximize her reward. Furthermore, she will
never randomize her strategy after deciding to play as the
penalty for answering incorrectly is too large. As a conse-
quence, she cannot guarantee a reward of more than −1. A
strategy by the first player that randomizes between left and
right with equal probability guarantees a reward of 1/2. This
is the maximum reward that the first player can guarantee as
any bias towards either side will result in the second player
choosing the pure strategy that correctly guesses that biased
direction. We note here that there is a gap in the rewards,
and this is a consequence of the fact that there is no equilib-
rium in this game1. We should note that our goal is not to
solve imperfect recall games, as we cannot hope to achieve
this without the concept of an equilibrium, but instead to ef-
ficiently find good strategies for large perfect recall games.

1This does not contradict Nash’s important result that every
game has a mixed strategy equilibria as we are looking at behav-
ioral strategies which are not necessarily equivalent in imperfect
recall scenarios.
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Figure 3: An example of a game with imperfect recall

With this goal in mind, the potential lack of an equilibrium
in our abstract games is discouraging, but does not halt the
idea completely.

Algorithmic Challenges. One method for finding good
strategies in an imperfect recall game is to convert the game
into one of perfect recall. This can be accomplished with
the notion of multiple selves (Gilboa 1997). Each player
with imperfect recall is replaced with multiple players, each
with the same utility function. These extra players can then
be privileged to different information so no actual player is
forgetting any of their past actions or decisions. Unfortu-
nately, we do not have efficient techniques for solving n-
player games, with n > 2, even when they exhibit perfect
recall. That is, additional players beyond two, and non-
constant-sum payoffs have their own set of equally difficult
challenges.

Another direct approach is to attempt to solve the imper-
fect recall game explicitly. Koller and Megiddo 1996 pre-
sented an algorithm for just this, but it has two issues that
make it impractical in our situation. First, the algorithm re-
quires exponential time to complete. Second, the resulting
strategy is in a different space, one that requires exponential
size to store. They showed in a previous work that solving an
imperfect recall game is indeed NP-hard (Koller & Megiddo
1992).

Many techniques for solving zero-sum games make use
of sequence form. Sequence form makes use of a realiza-
tion plan, which is a linear representation of a strategy in
a game of perfect recall. Using this linear representation,
one can construct a linear program similar to the one used to
solve for equilibria matrix games. This linear program can
be solved directly (Koller, Megiddo, & Stengel 1996), but
large scale methods can exploit the structure of this prob-
lem and use specialized gradient-based methods to converge
more rapidly and use fewer resources than a standard linear
program solver (Gilpin et al. 2007). Unfortunately, the very
definition of a realization plan relies on the fact that a single
action from an information set uniquely defines an entire se-
quence of actions under perfect recall. This no longer holds
when perfect recall is relaxed. As the definition of a real-
ization plan is not well-defined under imperfect recall, al-



gorithms based on sequence form are themselves ill-defined
when perfect recall is omitted.

As we reviewed in the background, the notion of counter-
factual regret (Zinkevich et al. 2008) is used to extend the
concept of regret to extensive games with perfect recall. It is
well known that if two agents use regret minimizing strate-
gies to compete in repeated play of a zero-sum game that
their average strategies converge to an equilibrium profile.
Here, averaging a strategy refers to averaging the probability
distribution at each information set where each distribution
is weighted by the probability that the underlying strategy
will reach that information set. An important property of
averaging a strategy is that under perfect recall this averag-
ing operation is linear in regard to the expected utility of a
player. That is, if there are n strategies for the first player,
then for any strategy for the second player, the average ex-
pected utility of the n strategies is the same as the expected
utility of the average of the n strategies. This clearly does
not hold in the example game in Figure 3 when we average
the two pure strategies for the second player. Unfortunately,
the proof of convergence to an equilibria hinges on this fact.
As previously noted, the concept of counterfactual regret is
defined as the regret at an information set in terms of coun-
terfactual utility. Conceptually, the counterfactual utility at
an information set is concerned with how a player chooses
her actions to try to reach said information set. With cer-
tain imperfect recall games, the notion of trying to reach an
information set becomes dubious and the notion of coun-
terfactual regret becomes ill-defined. For example, if from
an information set a player can take two separate actions
that both can lead to the same future information set, then
which action should the player choose to try to reach that
future information set? If we impose a more strict condi-
tion than imperfect recall, where no player cannot reach the
same future information set through separate actions from a
past information set, this ambiguity is resolved. One further
restriction we must impose is that no play of the game may
visit the same information set twice. With the chance sam-
pled variant of CFR, once we have sampled chance’s actions
all the operations performed on a single iteration behave ex-
actly the same for a game from this new class as they would
on a game of perfect recall. That is, we do not have to mod-
ify our chance sampled algorithm to account for imperfect
recall for it to be well-defined, but we will lose the guaran-
tee of approaching an equilibrium should we provide a game
from this new class that does not exhibit perfect recall.

Imperfect Recall Abstraction in Poker
For the remainder of the paper, we explore the use of imper-
fect recall abstractions in the domain of poker. We use CFR
to find strategies for the resulting abstract games and com-
pare them to perfect recall counterparts. As a test domain,
we use two variants of heads-up Texas Hold’em, which are
zero-sum poker games. This allows us to compare our new
programs with prior entries to the AAAI Computer Poker
Competition. In this section, we will first briefly describe
the Texas Hold’em variants. We must then describe previ-
ous abstraction techniques as well as our new imperfect re-
call abstraction techniques before we compare our new pro-

grams to previous programs that make use of perfect recall
abstractions.

Texas Hold’em
Texas Hold’em games require a standard deck of cards,
which is shuffled prior to play. One player is designated the
small blind and one the big blind. This designation typically
alternates on every hand. Before being dealt any cards, the
small blind is forced to bet one chip and the big blind two
chips into the pot. After these forced bets, four rounds of
play occur. In each round, some cards are dealt from the top
of the deck and subsequently players get to bet. The rules
for how players are allowed to bet depends on the type of
Texas Hold’em game. The two variants we are concerned
with in this paper are limit and no-limit. Limit betting is as-
sumed unless otherwise specified. The first round is called
the preflop and consists of two private cards being dealt to
each player. The small blind starts the betting during the
preflop. The preflop is followed by the flop, where three
community cards are dealt face up. The turn and the river
follow the flop. One community card is dealt during each
of these rounds. The big blind starts the betting for the flop,
turn and river. After the river betting has completed, play-
ers make the best five card poker hand from their two private
cards and the five community cards. The player with the best
hand wins all the chips in the pot.

During the betting portion of a round, the players alter-
nate making betting decisions. When facing a bet, i.e., the
opposing player has more chips in the pot than the player to
act, a player may fold, call or raise. Folding immediately
ends the game and forfeits all chips in the pot to the oppos-
ing player. Calling requires the player to match the opposing
player’s bet. Raising requires a player to exceed the oppos-
ing player’s bet. When not facing a bet, a player can check,
where no additional chips are added to the pot, or raise. If
checking or calling is the first action of a round then action
moves to the opponent, otherwise the game proceeds to the
next round. In a limit game, the size and number of raises
is fixed. In particular, the preflop and flop have a raise size
of two chips and the turn and river have a raise size of four
chips. The preflop has a maximum of three raises per round
and all subsequent rounds have a maximum of four raises
per round. In a no-limit game, a player may bet any number
of chips in his remaining stack provided that the raise is ei-
ther at least as big as the most recent raise for that round or it
puts the player all-in. Here, raising all-in refers to betting all
of one’s remaining chips. In our no-limit game, each player
starts each game with one thousand chips.

Abstraction
As the poker games we are interested in are far too large to
solve directly, we employ the use of abstraction techniques
to create smaller games that can be solved directly.

For both limit and no-limit games, we must perform card
abstraction. In the abstract game, a player knows that the
hand it holds belongs to a particular set of hands, as opposed
to an exact hand. This in effect merges information sets to-
gether. Various different metrics have been used in the past
to create these hand groupings. The most successful metrics



incorporate some notion of strength, which is how likely a
hand will win once all cards have been dealt, and potential,
which is how likely a hand’s strength will improve or dimin-
ish as future cards are dealt. We use hand strength squared
as our metric for grouping hands, which incorporates both
of these good qualities.

In no-limit games, we must perform action abstraction in
addition to card abstraction. Action abstraction restricts the
type of actions a player can make. That is, in a no-limit
game, we disallow certain bet sizes to reduce the size of
the game. Typically, to play the original game there must
be a translation mechanism (Gilpin, Sandholm, & Sorensen
2008) to convert actions in the original game to ones avail-
able in the abstract game. The sizes we allow for raises are a
pot sized bet, a ten pot sized bet and the all-in bet. Since all
our programs play with the same betting abstraction, trans-
lation is irrelevant for these experiments.

Public Information

Previous abstraction techniques would only provide the
agent with information regarding the strength of its hand.
This information does not differentiate whether the strength
of a hand is a result of the community cards or of the agent’s
private cards. This differentiation is strategically important.
For example, on a dry board, which is one where it is un-
likely that either player has a strong hand, a player should
not bluff as often as on other types of boards. An observant
opponent will quickly realize that often the player does not
often have a strong hand in this situation. Similarly, on a
connected board, which is one where it is likely a player has
either made a strong hand or is drawing to a strong hand, a
player might be less aggressive in betting his or her strong
hands as it is more likely that an opponent also has a strong
hand. In this situation, looking at the absolute hand strength
is deceiving as a hand can be weak relative to likely oppo-
nent holdings and still have a high absolute strength. Some
public information can be derived by an agent by looking
at the history of hand strengths through the betting rounds,
but there still exists important situations that remain indis-
tinguishable.

Our new programs makes additional use of the commu-
nity cards on the flop and the turn. As it is still not possible
for our program to differentiate every single board, we clus-
ter boards into similar categories. To create our board clus-
ters we make use of a perfect recall abstraction with 10 buck-
ets per round. In this abstraction, that each time chance acts,
its actions are uniformly divided into 10 different groups
based on the hand strength squared metric. Using this per-
fect recall abstraction, we create a 10 by 10 transition table
for every possible set of community cards, where an entry
(i, j) in this table denotes the number of hands that prior to
chance acting where in bucket i that after chance’s action
ended up in bucket j. We then run K-Means clustering us-
ing the Euclidean distance metric for 10000 iterations. Our
program uses 20 public information buckets on the flop and
these buckets are further divided into 3 additional buckets on
the turn.

Results
All of our programs were trained using the chance sampled
counterfactual regret minimization algorithm. The number
of iterations used to compute the strategies was between 500
million for the smaller abstract games, to 10 billion for the
larger abstract games. The smaller games took about a day
of computation on 8 nodes of a powerful cluster to compute,
where as the larger abstract games required the same re-
sources for about a week. We used millibets per hand (mb/h)
as our unit of measurement when comparing two strategies,
which is one thousandth of a small bet. That is, if one pro-
gram beats another by 5 millibets per hand, it is expected
to win 1 cent from the other player per hand (when playing
with a 2 dollar big blind). Each of the programs were played
against each other in 10000 hand duplicate matches until the
95% confidence interval was no larger than ±2 millibets in
limit and no larger than ±64 millibets in no-limit.

In Table 1 we see the results of a tournament between
eight different limit players. The first three bots use an 8s
sized card abstraction, which has 23 million information
sets. The first of these programs, pr.8, uses a perfect recall
abstraction. The second, ir.preflop.8, can distinguish all 169
preflop hands, but forgets all of this information on the flop.
On the flop, all hands a uniformly grouped into 64 buckets.
These flop buckets are remembered for the remainder of the
game. This abstraction is essentially the same size as pr.8 as
it contains only 161 more information sets. The third pro-
gram, ir.8, forgets its past buckets on every round and instead
uses all of its memory for the finest granularity on current
hand strength. That is, all hands are grouped into 64 buck-
ets on the flop, 512 buckets on the turn and 4096 buckets on
the river. This program has perfect information preflop. The
next two programs in the table are perfect recall programs
using 12s and 14s sized abstractions respectively. The 12s
abstraction has 118 million information sets and the 14s ab-
straction has 219 million information sets. Finally, our last
three bots make use of new public information. The first of
these programs uses an approximately 12s sized abstraction
and perfect recall from the flop onward. It uses perfect in-
formation preflop. On the flop, its hands are grouped into
buckets based on the 20 public information buckets and 8
hand strength buckets. These flop buckets are remembered
for the remainder of the game. The turn and river have 12
hand strength buckets each. The second of these programs
has a higher granularity of hand strength information on the
flop, but it reduces this granularity for future rounds. That
is, it has 16 hand strength buckets on the flop, but on the turn
and river, the program only recalls the flop hand strength as
if there were only 8 buckets available. These additional hand
strength buckets on the flop do not drastically impact the size
of the strategy as they are not remembered on future rounds.
The third program balances hand strength information and
public information by reducing the granularity of past hand
strength information as the game progresses. This last pro-
gram is approximately 14s sized and additionally has public
information on the turn.

We see in the limit game that imperfect recall alone does
not appear to provide a significant improvement in play. The
8s sized players perform similarly against all other players



(1) (2) (3) (4) (5) (6) (7) (8)
(1) pr.8 0 -1 1 -14 -18 -14 -15 -18
(2) ir.preflop.8 -1 0 0 -13 -16 -13 -13 -18
(3) ir.8 1 0 0 -10 -14 -9 -10 -15
(4) pr.12 14 13 10 0 -5 -5 -5 -10
(5) pr.14 18 16 14 5 0 0 -1 -7
(6) flop.12 14 13 9 5 0 0 -2 -7
(7) flop.12-2 15 13 10 5 1 2 0 -6
(8) flop.turn.14 18 18 15 10 7 7 6 0

Table 1: Heads-up Texas Hold’em Crosstable in millibets per hand (mb/h)

in the tournament and tie each other. The imperfect recall
8s players lose sightly less than the perfect recall 8s player
against the remainder of the field.

The power of imperfect recall in limit appears with the
addition of public information. The 12s sized players with
public information perform better than the perfect recall 12s
player and perform similarly to the 14s sized player, which
is approximately two times larger. The second of the 12s
sized imperfect recall players actually beats the 14s sized
perfect recall player. The 14s sized imperfect recall player,
which we expected to be the strongest, performs about on
par with the 14s sized perfect recall player against the 8s
sized programs, but performs much better against the larger
programs.

The flop.turn.14 player was entered into the 2008 AAAI
Computer Poker Competition limit events. It won the limit
equilibrium event by beating all other competitors with sta-
tistical significance.

In Table 2 we see the results of a tournament between five
different no-limit players. Three of these players play in an
8s sized abstraction, and two of these players play in a 12s
sized abstraction. The ir.preflop players make use imperfect
recall to see all possible preflop situations. These players
forget all information about what they held on the preflop
when the flop has been reached. The ir.8 player uses imper-
fect recall on every round, which gives it the finest granular-
ity of the player’s current hand strength, but no memory of
any past hand strengths.

The player that performs the worst is the 8s player us-
ing perfect recall. Somewhat surprising, however, is that the
perfect recall 12s player is worse than the imperfect recall 8s
players. This player beats the perfect recall 8s player by 435
mb/h, the largest amount in the table, but loses by moderate
amounts to all the other players. This is especially impor-
tant to note, as the size of the strategy the 12s player uses is
roughly five times larger than that of the 8s players.

We observe that the 8s player that uses imperfect recall
on every round beats every other player except the imperfect
recall 12s player. This is slightly different from the results
in limit, where imperfect recall alone does not seem to have
much of an effect. A possible explanation for this is due to
the presence of the all-in bet in no-limit. When facing an all-
in bet, a very important consideration of the acting player is
the strength of his or her hand. The imperfect recall players
have the highest granularity on this particular information.
In limit, one individual decision is of less importance to ones

overall strategy. In particular, the preflop decisions in limit
are much easier to correct for later in the game, whereas in
no-limit it can be extremely costly to bet a large amount of
one’s chips preflop with a mediocre hand.

Finally, we see that the imperfect recall 12s player beat
every other player, including the perfect recall 12s player by
173 mb/h. What is interesting to note, is that it only beats the
perfect recall 8s player by 386 mb/h, less than the 435 mb/h
the perfect recall 12s player accomplishes. This means that
using imperfect recall is not a strict benefit in all situations.

The ir.preflop.12 player was entered into the 2008 AAAI
Computer Competition no-limit event. It won the event,
which was determined using a bankroll runoff system. In
this system, all players play each other in a round-robin tour-
nament. The player that loses the most to all other players
is then eliminated and the chips it lost are removed from the
other players’ totals. This process is repeated to determine
the place of all players.

Conclusion
Perfect recall is a common assumption for extensive games
and for building abstractions — and for good reason. Im-
perfect recall creates numerous conceptual and algorith-
mic difficulties, ranging from the loss of the usual solu-
tion concept to certain algorithms no longer even being
well-defined. From the artificial intelligence perspective,
though, abandoning the perfect recall assumption allows for
far more control in constructing abstractions that give play-
ers the most relevant information for the available compu-
tational resources. Although without theoretical guarantees,
we showed how we can use imperfect recall abstractions to
build strong strategies in two varieties of poker domains. We
demonstrated the superiority of the imperfect recall strate-
gies over their perfect recall counterparts.
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