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Abstract

Extensive-form games are a powerful model for representing
interactions between agents. Nash equilibrium strategies are
a common solution concept for extensive-form games and, in
two-player zero-sum games, there are efficient algorithms for
calculating such strategies. In large games, this computation
may require too much memory and time to be tractable. A
standard approach in such cases is to apply a lossy state-space
abstraction technique to produce a smaller abstract game that
can be tractably solved, while hoping that the resulting ab-
stract game equilibrium is close to an equilibrium strategy in
the unabstracted game. Recent work has shown that this as-
sumption is unreliable, and an arbitrary Nash equilibrium in
the abstract game is unlikely to be even near the least subop-
timal strategy that can be represented in that space. In this
work, we present for the first time an algorithm which ef-
ficiently finds optimal abstract strategies — strategies with
minimal exploitability in the unabstracted game. We use this
technique to find the least exploitable strategy ever reported
for two-player limit Texas hold’em.

Introduction
Extensive-form games are a general model of multiagent
interaction. They have been used to model a variety of
scenarios including game playing (Zinkevich et al. 2008;
Lanctot et al. 2009; Hoda et al. 2010; Risk and Szafron
2010), bargaining and negotiation (Lazaric, de Cote, and
Gatti 2007; Gatti 2008), argumentation (Procaccia and
Rosenschein 2005), and even distributed database man-
agement (Mostafa, Lesser, and Miklau 2008). Strategic
reasoning in all but the simplest such models has proven
computationally challenging beyond certain special cases.
Even the most theoretically-straightforward setting of two-
player, zero-sum extensive-form games presents obstacles
for finding approximate solutions for human-scale interac-
tions (e.g., two-player, limit Texas hold’em with its 1018

game states). These obstacles include the recently dis-
covered existence of abstraction pathologies (Waugh et al.
2009a) and a form of abstract game “overfitting” (Johanson
et al. 2011). This paper presents the first technique for over-
coming these abstraction challenges in the two-player, zero-
sum setting.

Copyright c© 2012, Association for the Advancement of Artificial
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Abstraction, first suggested by Billings and col-
leagues (2003), is the dominant approach for handling mas-
sive extensive-form imperfect information games and is
used by the majority of top competitors in the Annual
Computer Poker Competition (Sandholm 2010). The ap-
proach involves constructing an abstract game by aggre-
gating each player’s states (i.e., information sets) into ab-
stract game states (Gilpin, Sandholm, and Sørensen 2007;
Zinkevich et al. 2008). An ε-Nash equilibrium is computed
in the abstract game, and that strategy is then employed in
the original game. As equilibrium computation algorithms
improve or computational resources become available, a re-
fined, less abstract but larger, game can be solved instead.
This improvement, as larger and larger abstract games are
solved, has appeared to drive much of the advancement
in the Annual Computer Poker Competitions (Sandholm
2010).

However, recent work by Waugh et al. (2009a) showed
that solving more refined abstractions is not always bet-
ter by presenting examples of abstraction pathologies in
toy poker games. They showed that even when consider-
ing strict refinements of an abstraction (i.e., one capable of
representing a strictly larger set of strategies), the equilibria
found in this finer-grained abstraction could be dramatically
worse approximations than equilibria in the coarser abstrac-
tion. Furthermore, their experiments showed that while an
abstraction may be able to represent good approximations of
real game equilibria, these good abstract strategies may not
be abstract game equilibria.

A recent publication presented a technique for effi-
ciently computing best-responses in very large extensive-
form games (Johanson et al. 2011). This made it possible
to investigate Waugh’s findings in the context of full two-
player limit Texas hold’em. While abstraction pathologies
were not found to be common using typical abstraction tech-
niques, it was discovered that equilibrium learning methods,
such as Counterfactual Regret Minimization (CFR) (Zinke-
vich et al. 2008), can “overfit”: as the approximation gets
more exact in the abstract game, its approximation of the
full-game equilibrium can worsen (see Figure 1).

Combined, these results present a rather bleak picture. It
is unclear how to use more computational power to better
approximate a Nash equilibrium in massive extensive-form
games. Furthermore, our current abstractions are likely able



10-1

100

101

102

102 103 104 105 106

 260

 280

 300

 320

 340

Ab
st

ra
ct

 G
am

e 
Ex

pl
oi

ta
bi

lit
y 

(m
bb

/g
)

R
ea

l G
am

e 
Ex

pl
oi

ta
bi

lit
y 

(m
bb

/g
)

Time (seconds)

Abstract Game
Real Game

Figure 1: Abstract-game and real-game exploitability of
strategies generated by the CFR algorithm.

to represent better approximations than our current meth-
ods actually compute. In this paper, we present the first al-
gorithm that avoids abstraction pathologies and overfitting
entirely. Essentially, the approach leaves one player unab-
stracted and finds the best possible abstract strategy for the
other player. It avoids the memory requirements for solving
for an unabstracted opponent by having the opponent em-
ploy a best-response strategy on each iteration rather than
a no-regret strategy. It then uses sampling tricks to avoid
the computational requirements needed to compute an ex-
act best-response on each iteration. The resulting algorithm,
CFR-BR, finds optimal abstract strategies, i.e, the best-
approximation to a Nash equilibrium that can be represented
within a chosen strategy abstraction. Consequently, it is not
subject to abstraction pathologies or overfitting. We demon-
strate the approach in two-player limit Texas hold’em, show-
ing that it indeed finds dramatically better Nash equilibrium
approximations than CFR with the same abstraction. We use
the technique to compute the least exploitable strategy ever
reported for this game.

Background
We begin with some formalism for extensive-form games
and the counterfactual regret minimization algorithm.

Extensive-Form Games. For a complete description
see (Osborne and Rubinstein 1994). Extensive-form games
provide a general model for domains with multiple agents
making decisions sequentially. They can be viewed as a
game tree that consists of nodes corresponding to histories
of the game and edges between nodes being actions taken
by agents or by the environment. Therefore each history
h ∈ H corresponds to a past sequence of actions from the set
of players, N , and chance, c. For each non-terminal history
h, the acting player P (h) ∈ N∪{c} selects an action a from
A(h), the set of actions available at h. We call h′ a prefix of
h, written as h′ v h, if h begins with h′. Each terminal his-
tory z ∈ Z has a utility associated with it for each player i,
ui(z). If

∑
i∈N ui(z) = 0 then the game is zero-sum. This

work focuses on two-player, zero-sum games (i.e., u1(z) =
−u2(z)). Let ∆i = maxz∈Z ui(z) −minz∈Z ui(z), be the
range of utilities for player i. In our case, a two-player zero-

sum game, ∆i is the same for both players and so we refer
to it simply as ∆.

In imperfect information games, actions taken by the
players or by chance may not be observable by all of the
other players. Extensive games model imperfect informa-
tion by partitioning the histories where each player acts into
information sets. For each information set I ∈ Ii, player i
cannot distinguish between the histories in I . It is required
that A(h) must equal A(h′) for all h, h′ ∈ I , so we can
denote the actions available at an information set as A(I).
Furthermore, we generally require the information partition
to satisfy perfect recall, i.e., all players are able to distin-
guish histories previously distinguishable or in which they
took a different sequence of actions. Poker is an example of
an imperfect information game since chance acts by dealing
cards privately to the players. Since player i cannot see the
cards of the other players, histories where only the cards of
i’s opponents differ are in the same information set.

A strategy for player i, σi ∈ Σi, maps each informa-
tion set I ∈ Ii to a probability distribution over the actions
A(I). The average strategy, σ̄ti , of the strategies σ1

i , . . . , σ
t
i

defines σ̄ti(I) as the average of σ1
i (I), . . . , σti(I) weighted

by each strategy’s probability of reaching I (Zinkevich et
al. 2008, Equation 4). A strategy profile, σ ∈ Σ, is
a vector of strategies (σ1, . . . , σ|N |). We let σ−i refer to
the strategies in σ except for σi. Given a strategy pro-
file, we define player i’s expected utility as ui(σ) or, since
we are using two-player games, ui(σ1, σ2). We define
bi(σ−i) = maxσ′i∈Σi

ui(σ
′
i, σ−i) to be the best response

value for player i against their opponents σ−i (a best re-
sponse is the argmax). A strategy profile σ is an ε-Nash
equilibrium if no player can gain more than ε by unilater-
ally deviating from σ. That is, if bi(σ−i) ≤ ui(σi, σ−i) + ε,
for all i ∈ N . If this holds when ε = 0, then all play-
ers are playing a best response to σ−i, and this is called a
Nash equilibrium. In two-player zero-sum games, we de-
fine the game value, vi, for each player i to be the unique
value of ui(σ∗) for any Nash equilibrium profile σ∗. Fi-
nally, in two-player zero-sum games we define εi(σi) =
b−i(σi) − v−i to be the exploitability of strategy σi, and
ε(σ) = (ε1(σ1) + ε2(σ2))/2 = (b1(σ2) + b2(σ1))/2 to
be the exploitability (or best response value) of the strategy
profile σ. This measures the quality of an approximation to
a Nash equilibrium profile, as Nash equilibria have an ex-
ploitability of 0.
Counterfactual Regret Minimization. CFR (Zinkevich et
al. 2008) is a state-of-the-art algorithm for approximat-
ing Nash equilibria in two-player, zero-sum, perfect-recall
games. It is an iterative algorithm that resembles self-play.
Two strategies, one for each player, are represented in mem-
ory and initialized arbitrarily. In each iteration, the strate-
gies are evaluated with respect to each other and updated so
as to minimize a weighted form of regret at each decision:
the difference in utility between the actions currently being
selected and the best action in retrospect. Over a series of
iterations, the average strategy for the players approaches a
Nash equilibrium. As our algorithm builds upon CFR, we
will restate some theory and formalism from that work.

Define RTi , player i’s average overall regret over T



steps, as RTi = 1
T maxσ∗i ∈Σi

∑T
t=1(ui(σ

∗
i , σ

t
−i) − ui(σt)).

In other words, average overall regret is how much more util-
ity a player could have attained on average had they played
some other static strategy instead of the sequence of strate-
gies they actually played.

Theorem 1 (Folk theorem: Zinkevich et al. 2008, Theorem
2) In a two-player zero-sum game at time T, if RTi < εi for
both players, then σ̄T is an (ε1 + ε2)-Nash equilibrium.

Theorem 2 (Zinkevich et al. 2008, Theorem 4) If player
i is updating their strategy with CFR, then RTi ≤
∆|Ii|

√
|Ai|/

√
T where |Ai| = maxI∈I |A(I)|

Since Theorem 2 bounds RTi , it follows from Theorem 1
that both players playing according to CFR will yield an
average strategy σ̄T that is an (ε1 + ε2)-Nash equilibrium
where εi = ∆|Ii|

√
|Ai|/

√
T .

CFR-BR
In Waugh and colleagues’ work on abstraction pathologies,
they found one case in which abstraction pathologies do not
occur (Waugh et al. 2009a, Theorem 3). When solving a
game where one agent uses abstraction and the other does
not, Waugh et al. noted that a strict refinement to the ab-
straction will result in a monotonic decrease in the abstracted
player’s exploitability. In addition, we note that the ab-
stracted player’s strategy in this equilibrium is by definition
the least exploitable strategy that can be represented in the
space; otherwise, it would not be an equilibrium. Thus, ap-
plying an iterative algorithm such as CFR to this asymmet-
rically abstracted game will avoid both the pathologies and
the overfitting problem, as convergence towards the equilib-
rium directly minimizes exploitability. However, Waugh et
al. (2009a, Page 4) note that “...solving a game where even
one player operates in the null abstraction is typically infea-
sible. This is certainly true in the large poker games that
have been examined recently in the literature.”

We will now present an algorithm that achieves exactly
this goal – solving a game where the opponent is unab-
stracted – and we will demonstrate the technique in the large
domain of two-player limit Texas hold’em poker, just such
a poker game which has been examined recently in the lit-
erature. Our technique, called CFR-BR, does this without
having to explicitly store the unabstracted opponent’s entire
strategy, and thus avoids the large memory requirement for
doing so. Our explanation of CFR-BR involves two steps,
and is illustrated in Figure 2. For our explication, we will
assume without loss of generality that the abstracted player
is player 1, while the unabstracted player is player 2.
Training against a Best Response. We begin by present-
ing an alternative method for creating the unabstracted op-
ponent’s strategy. The proof of CFR’s convergence relies
on the folk theorem presented as Theorem 1. Using CFR to
update a player’s strategy is just one way to create a regret
minimizing agent needed to apply the theorem. A best re-
sponse is also a regret minimizing agent, as it will achieve
at most zero regret on every iteration by always choosing
the highest valued actions. We will call an agent with this

A Avs A Uvs

A BRvs A vs
U

BR

Both players abstracted:
  Suboptimal strategy,
  Low memory requirements

Opponent is Unabstracted:
  Optimal abstract strategy,
  High memory requirements

Opponent is Best Response:
  Optimal abstract strategy, 
  High computation requirements

Opponent is Hybrid:
  Optimal abstract strategy,
  Low memory and
    computation requirements

CFR

CFR-BR

(a) (b)

(c) (d)

Figure 2: Moving from CFR to CFR-BR

strategy update rule a BR-agent, and its strategy on any it-
eration will be a best response to its opponent’s strategy on
that same iteration.1

In the CFR-BR algorithm, we will start with an agent that
updates its strategy using CFR (a CFR-agent) and use a BR-
agent as its opponent. The CFR-agent may use abstraction.
Over a series of iterations, we will update these strategies
with respect to each other. Since both of these agents are
regret minimizing agents, we can prove that they converge
to an equilibrium at a rate similar to the original symmetric
CFR approach.

Theorem 3 After T iterations of CFR-BR, σ̄T1 is player 1’s

part of an ε-Nash equilibrium, with ε =
∆|I1|
√
|A1|√

T
.

Proof. Since player 1 is playing according to CFR, by
Zinkevich et al. (2008), RT1 ≤ ε. By the folk theorem, to
finish the proof it is enough to show that player 2 has no
positive regret.

T ·RT2 = max
σ2

(
T∑
t=1

u2(σt1, σ2)−
T∑
t=1

u2(σt1, σ
t
2)

)
(1)

= max
σ2

T∑
t=1

u2(σt1, σ2)−
T∑
t=1

u2(σt1, σ
t
2) (2)

= max
σ2

T∑
t=1

u2(σt1, σ2)−
T∑
t=1

max
σ′2

u2(σt1, σ
′
2) ≤ 0 (3)

�

Using an unabstracted BR-agent as opposed to an unab-
stracted CFR-agent for the opponent has two benefits. First,
its strategy will be pure, and can thus be represented more
compactly than a behavioral strategy that assigns probabil-
ities to actions. Second, we will now prove that when a
CFR-agent plays against a BR-agent, the CFR-agent’s se-
quence of strategies converges to a Nash equilibrium. Typ-

1Note that we could not employ two BR-agents in self-play, as
they would each have to be a best-response to each other, and so a
single iteration would itself require solving the game.



ically, it is only the average strategy that converges. How-
ever, since the current strategy converges with high proba-
bility, tracking the average strategy is unnecessary and only
half as much memory is required for the CFR-agent. Note
that the proof requires the algorithm to be stopped stochas-
tically in order to achieve its high-probability guarantee. In
practice, our stopping time is dictated by convenience and
availability of computational resources, and so is expected
to be sufficiently random.

Theorem 4 If CFR-BR is stopped at an iteration T ∗ chosen
uniformly at random from [1, T ], then for any p ∈ (0, 1],
with probability (1−p), σT

∗

1 is player 1’s part of an ε
p -Nash

equilibrium with ε defined as in Theorem 3.

Proof. As in Theorem 3, after T iterations, RT1 ≤ ε. This
gives a bound on the average observed value based on the
game value v1.

RT1 =
1

T
max
σ1

T∑
t=1

u1(σ1, σ
t
2)− 1

T

T∑
t=1

u1(σt1, σ
t
2) ≤ ε (4)

∴
1

T

T∑
t=1

u1(σt1, σ
t
2) ≥ 1

T
max
σ1

T∑
t=1

u1(σ1, σ
t
2)− ε (5)

≥ max
σ1

u1(σ1, σ̄
T
2 )− ε (6)

≥ v1 − ε (7)

For all t, σt2 is a best response to σt1, so u1(σt1, σ
t
2) ≤ v1.

With the bounds above, this implies u1(σt1, σ
t
2) < v1− ε

p on
no more than bp ∗ T c of the T iterations. If T ∗ is selected
uniformly at random from [1, T ], there is at least a (1 − p)
probability that u1(σT

∗

1 , σT
∗

2 ) ≥ v1 − ε
p . Because σT

∗

2 is a
best response to σT

∗

1 , this means σT
∗

1 is player 1’s part of an
ε
p -Nash equilibrium. �

CFR-BR with sampling. CFR-BR still has two remain-
ing challenges that make its use in large games intractable.
First, while a best response can be stored compactly, it is
still far too large to store in human-scale settings. Second,
best response strategies are nontrivial to compute. Recently
Johanson and colleagues demonstrated an accelerated best
response technique in the poker domain that required just
76 CPU-days, and could be run in parallel in one day (Jo-
hanson et al. 2011). While previously such a computation
was thought intractable, its use with CFR-BR would involve
repeatedly doing this computation over a large number of
iterations for convergence to a desired threshold.

However, there is an alternative. Monte-Carlo CFR (MC-
CFR) is a family of sampling variants of CFR in which some
of the actions in a game, such as the chance events, can
be sampled instead of enumerated (Lanctot et al. 2009).
This results in faster but less precise strategy updates for
the agents, in which only subgames of the game tree are ex-
plored and updated on any one iteration. One such variant,
known as Public Chance Sampled CFR (PCS), uses the fast
game tree traversal from the accelerated best response tech-
nique to produce a CFR variant that efficiently traverses the
game tree, updating larger portions on each iteration than

were previously possible (Johanson et al. 2012). The new
variant samples only public chance events while updating
all possible information sets that vary in each agent’s private
information.

We can use a variant of PCS with CFR-BR to avoid the
time and memory problems described above. On each iter-
ation of CFR-BR, we will sample one public chance event
early in the game and only update the complete subgame
reachable given that outcome. This subgame includes all
possible subsequent chance events after the sampled one.
This divides the game tree into two parts: the trunk from the
root to the sampled public chance event, and the subgames
that descend from it. Unlike strategies based on regret ac-
cumulated over many iterations, portions of a best response
strategy can be computed in each subgame as required and
discarded afterwards. This avoids the memory problem de-
scribed above, as at any one time, we only need to know the
BR-agent’s strategy in the trunk and the one sampled sub-
game for the current iteration. However, the computation
problem remains, as creating the BR-agent’s trunk strategy
would still require us to traverse all of the possible chance
events, in order to find the value of actions prior to the sam-
pled public chance event.

To avoid this final computation problem, we replace the
BR-agent with yet another regret-minimizing agent which
we call a Hybrid-agent. This agent will maintain a strat-
egy and regret values for the trunk of the game, and update
it using Public Chance Sampled CFR. In the subgames, it
will compute and follow a best response strategy to the op-
ponent’s current strategy. Together, this means that on any
one iteration, we only need to compute and store one sub-
game of a best response, and thus require far less time and
memory than a BR-agent does. We will now prove that the
Hybrid-agent is a regret minimizing agent.

Definition 1 Ĩ2 ⊂ I2 is a trunk for player 2 if and only if
for all I, I ′ ∈ I2 such that there exists h v h′ with h ∈ I
and h′ ∈ I ′, if I ′ ∈ Ĩ2 then I ∈ Ĩ2. In other words, once
player 2 leaves the trunk, she never returns to the trunk.
Theorem 5 After T iterations of hybrid CFR-BR using
a trunk Ĩ2, with probability (1 − p), RT2 ≤ ε =(

1 +
√

2√
p

)
∆|Ĩ2|
√
|A2|√

T
.

Proof. Define a partial best-response with respect to the
trunk Ĩ2 as follows

σ2:I2\Ĩ2→BR(σ1) = argmax
σ′2 s.t. σ′2(I)=σ2(I)∀I∈Ĩ2

u2(σ1, σ
′
2) (8)

We can bound the regret using this partial-best response.

RT2 =
1

T
max
σ2

T∑
t=1

u2(σt1, σ2)− 1

T

T∑
t=1

u2(σt1, σ
t
2) (9)

≤ 1

T
max
σ2

T∑
t=1

u2

(
σt1, σ2:I2\Ĩ2→BR(σt

1)

)
− 1

T

T∑
t=1

u2

(
σt1, σ

t
2:I2\Ĩ2→BR(σt

1)

)
(10)



Because σt2 no longer has any effect outside Ĩ2, this is equiv-
alent to doing sampled CFR on a modified game where
player 2 only acts at information sets in the trunk. This
means we can bound the regret by ε with probability (1 −
p) by application of the MCCFR bound from Lanctot et
al. (2009, Theorem 5). �

Since the Hybrid-agent is regret minimizing, it is simple to
show that a CFR-agent playing against it will converge to an
equilibrium using our sampling variant of CFR-BR.

Theorem 6 For any p ∈ (0, 1], after T iterations of hy-
brid CFR-BR using a trunk Ĩ2, with probability (1 − p),
(σ̄T1 , σ̄

T
2 ) is an (ε1 + ε2)-Nash equilibrium profile with ε1 =(

1 + 2√
p

)
∆|I1|
√
|A1|√

T
and ε2 =

(
1 + 2√

p

)
∆|Ĩ2|
√
|A2|√

T
.

Proof. Because player 1 is playing according to sampled
CFR, we can bound RT1 ≤ ε1 with probability (1− p/2) by
application of the MCCFR bound (2009, Theorem 5). Theo-
rem 5 shows thatRT2 ≤ ε2 with probability (1−p/2). Using
the union-bound, we have that both conditions hold with at
least probability (1−p). If both conditions hold, Theorem 1
gives us that (σ̄T1 , σ̄

T
2 ) is an (ε1 + ε2)-Nash equilibrium. �

Unfortunately, since the Hybrid-agent does not use a best
response strategy in the trunk, only the CFR-agent’s aver-
age strategy (and not the current strategy) is guaranteed to
converge to a Nash equilibrium. Since the trunk is such a
miniscule fraction of the tree, the current strategy might still
converge (quickly) in practice. We will specifically investi-
gate this empirically in the next section. In the remainder
of the paper, we will use the name CFR-BR to refer to the
variant that uses the Hybrid-agent, as this is the variant that
can be practically applied to human scale problems.

Empirical Analysis
Our empirical analysis begins by exploring the correctness
of our approach in a toy poker game. We then apply our
technique to two-player (heads-up) limit Texas hold’em. Fi-
nally, we explore how we can use CFR-BR to answer pre-
viously unanswered questions about abstraction quality, ab-
straction size, and the quality of strategies in competition.
Toy Game. We begin our empirical analysis of CFR-BR
in the small poker game of 2-round 4-bet hold’em ([2-4]
hold’em), recently introduced by Johanson et al. (2012).
While we call this a “toy game”, this game has 94 mil-
lion canonical information sets and 2 billion game states.
It is similar to the first two rounds of two-player limit Texas
hold’em. A normal sized deck is used, each player is given
two private cards at the start of the game, and three public
cards are revealed at the start of the second round. In each
round, the players may fold, call and bet as normal, with a
maximum of four bets per round. At the end of the second
round, the remaining player with the best five-card poker
hand wins. This game is useful for our analysis because it
is small enough to be solved by CFR and CFR-BR without
requiring any abstraction. In addition, we can also solve this
game when one or both players do use abstraction, so that
we can evaluate the impact of the overfitting effect described

10-1

100

101

102

103

102 103 104 105 106 107

Ex
pl

oi
ta

bi
lit

y 
(m

bb
/g

)

Time (CPU-seconds)

CFR
CFR-BR Average
CFR-BR Current

Figure 3: Convergence to equilibrium in unabstracted [2-4]
hold’em, 94 million information sets.

101

102

103

102 103 104 105 106 107

Ex
pl

oi
ta

bi
lit

y 
(m

bb
/g

)

Time (CPU-seconds)

  81.332
  143.932

CFR A-vs-A
CFR A-vs-U

CFR-BR Average
CFR-BR Current
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call 5-bucket abstraction, 1,790 information sets.

earlier. The following [2-4] experiments were performed on
a 12-core 2.66 GHz computer, using a threaded implemen-
tation of CFR and CFR-BR.

Figure 3 shows the convergence rate of Public Chance
Sampled CFR and CFR-BR in unabstracted [2-4] hold’em
on a log-log plot. In this two-round game, CFR-BR uses a
“1-round trunk”, and each iteration involves sampling one
set of flop cards. Each series of datapoints represents the
set of strategies produced by CFR or CFR-BR as it runs
over time, and the y-axis indicates the exploitability of the
strategy. In the computer poker community, exploitability
is measured in milli-big-blinds per game (mbb/g), where a
milli-big-blind is one one-thousandth of a big blind, the ante
made by one player at the start of the game. All exploitabil-
ity numbers for all experiments are computed exactly using
the technique in Johanson et al. (2011). From the graph, we
see that CFR smoothly converges towards an optimal strat-
egy. The CFR-BR average strategy also smoothly converges
towards equilibrium, although at a slower rate than CFR. Fi-
nally, the CFR-BR current strategy also improves over time,
often faster than the average strategy, although it is noisier.

In Figure 4, we investigate the effects of applying a simple
perfect recall abstraction technique to [2-4] hold’em. When
CFR solves a game where both players are abstracted (CFR
A-vs-A), we see that the strategies are exploitable for 144
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mbb/g in the unabstracted game. When CFR is used to
create an abstracted player through games against an unab-
stracted opponent (CFR A-vs-U), the abstracted strategies
converge to an exploitability of 81 mbb/g. This demon-
strates that the abstraction is capable of representing bet-
ter approximations than are found by CFR as it is typically
used. With CFR-BR, both the average strategy and the cur-
rent strategy converge to this same improved value.

In Figure 5, we perform a similar experiment where an
imperfect recall abstraction is applied to [2-4] hold’em. Im-
perfect recall abstractions have theoretical problems (e.g.,
the possible non-existence of Nash equilibria), but have been
shown empirically to result in strong strategies when used
with CFR (Waugh et al. 2009b; Johanson et al. 2011). When
both players are abstracted, CFR converges to an exploitabil-
ity of 103 mbb/g. When only one player is abstracted, or
when CFR-BR is used, the abstracted player’s strategy con-
verges to an exploitability of 25 mbb/g.

These results in [2-4] hold’em show that CFR-BR con-
verges to the same quality of solution as using CFR with one
unabstracted player, while avoiding the high memory cost
of representing the unabstracted player’s entire strategy. We
also note that while the CFR-BR current strategy is not guar-
anteed to converge since the unabstracted Hybrid-agent uses
CFR in the trunk, in practice the current strategy converges
nearly as well as the average strategy. Having demonstrated
these properties in a small game, we can now move to the
large game of Texas hold’em in which it is intractable to use
CFR with an unabstracted opponent.

Texas Hold’em. We can now apply the CFR-BR tech-
nique to the large game of two-player limit Texas hold’em,
one of the events in the Annual Computer Poker Competi-
tion (Zinkevich and Littman 2006). First, we will investigate
how the choice of the size of the trunk impacts the memory
requirements and convergence rate. In the [2-4] hold’em
results presented above, we used a “1-round trunk”, where
each iteration sampled the public cards revealed at the start
of the second round. While the split between the trunk and
the subgames could happen at any depth in the tree, in prac-
tice it is convenient to start subgames at the start of a round.
In a four-round game such as Texas hold’em, there are three

Texas hold’em RAM required
CFR-BR Trunk Trunk Subgame Total (48 cores)
1-Round 14.52 KB 1.18 GB 56.64 GB
2-Round 936.33 MB 2.74 MB 1.07 GB
3-Round 359.54 GB 6.54 KB 359.54 GB
CFR (4-round) 140.26 TB n/a 140.26 TB

Table 1: Memory requirements for the CFR-BR Hybrid-
agent in heads-up limit Texas hold’em

such convenient choices for the size of the trunk: 1-round,
2-round, or 3-round. With a 1-round trunk, each iteration
involves sampling one set of public cards for the flop, and
then unrolling all possible turn and river cards to create a
best response strategy for this 3-round subgame. We then
update the CFR-agent throughout this large subgame, and
use the resulting values to perform CFR updates for both
players in the trunk. Alternatively, with a 2-round trunk we
will sample one set of flop and turn public cards and unroll
all possible river cards. The trunk is thus larger and requires
more time to update, but each subgame is smaller and up-
dates are faster. Similarly, a 3-round trunk will sample one
set of flop, turn and river cards, and each small subgame in-
volves only the betting on the final round. A 4-round trunk
would be equivalent to running CFR with an unabstracted
opponent, as the entire game would be in the trunk.

Our choice of the size of the trunk thus allows us to trade
off between the time required for the trunk and subgame
updates, and the memory required to store an unabstracted
CFR trunk strategy and the unabstracted best response sub-
game strategy. In practice, multiple threads can be used that
each perform updates on different subgames simultaneously.
Thus, the program as a whole requires enough memory to
store one copy of the CFR player’s strategy and one copy of
the Hybrid-agent’s trunk strategy, and each thread requires
enough memory to store one pure best response subgame
strategy. In Table 1, we present the memory required for a
CFR-BR Hybrid-agent using these trunk sizes, after merging
isomorphic information sets that differ only by a rotation of
the cards’ suits. As a 3-round trunk would require 360 giga-
bytes of RAM just for the Hybrid-agent, our Texas hold’em
experiments will only use 1-round and 2-round trunks. Since
CFR with an unabstracted opponent requires an infeasible
140 terabytes of RAM, our results will only compare CFR-
BR to CFR with both players abstracted. For our experi-
ments on Texas hold’em, a 48-core 2.2 GHz computer was
used with a threaded implementation of Public Chance Sam-
pled CFR and CFR-BR.

Figure 6 shows a log-log convergence graph of CFR com-
pared to 1-round and 2-round CFR-BR’s current and average
strategies in a 10-bucket perfect recall abstraction. This ab-
straction was used to demonstrate the overfitting effect in the
recent work on accelerated best response computation (Jo-
hanson et al. 2011, Figure 6), and was the abstraction used
by Hyperborean in the 2007 Annual Computer Poker Com-
petition’s heads-up limit instant runoff event. Due to the
overfitting effect, CFR reaches an observed low point of 277
mbb/g after 2,713 seconds (130k seconds of CPU-time), but
then gradually increases to an exploitability of 305 mbb/g.
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Figure 6: Convergence in Texas hold’em using a perfect re-
call 10-bucket abstraction, 57 million information sets.
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Figure 7: Convergence in Texas hold’em using an imperfect
recall 9000-bucket abstraction, 57 million information sets.

The 2-round trunk CFR-BR current and average strategies
reach 92.638 mbb/g and 93.539 mbb/g respectively, and very
little progress is being made through further computation.

Figure 7 demonstrates CFR and CFR-BR in a 9000-
bucket imperfect recall abstraction. This abstract game is
almost exactly the same size as the perfect recall abstrac-
tion presented in Figure 6, and was also used previously to
demonstrate the overfitting effect (Johanson et al. 2011, Fig-
ure 6). In this setting, CFR reaches an observed low of 241
mbb/g within the first 3600 seconds (172k seconds of CPU-
time), and then gradually increases to 289 mbb/g. The 2-
round trunk CFR-BR current and average strategies reach
61.339 mbb/g and 60.687 mbb/g respectively, after which
point the curves appear to have very nearly converged.

These two figures demonstrate that CFR-BR can find dra-
matically less exploitable strategies than is possible with
CFR. The previous least exploitable known strategy for this
game was Hyperborean2011.IRO, which was exploitable for
104.410 mbb/g while using an abstraction with 5.8 billion
information sets, one hundred times larger than the abstrac-
tions used in Figures 6 and 7. While the 1-round and 2-
round trunk strategies will converge to the same level of
exploitability, we find that the 2-round trunk strategy con-
verges significantly faster while, as shown in Table 1, using
far less memory.
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(a) 10-bucket perfect recall abstraction.
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(b) 9000-bucket imperfect recall abstraction.

Figure 8: One-on-One performance in Texas hold’em be-
tween CFR-BR strategies and the final CFR strategy with
the same abstraction. Results are accurate to ±1.2 mbb/g.

In Competition. The significant drop in exploitability pro-
vided by CFR-BR is accompanied by a cost to the perfor-
mance of the strategies against suboptimal opponents, such
as those likely to be faced in the Annual Computer Poker
Competition. When CFR is applied to an abstract game, it
finds a Nash equilibrium within the abstraction and these
strategies will do no worse than tie against any other strat-
egy in the abstraction, including those generated by CFR-
BR. In fact, since the CFR-BR strategies minimize their
loss against an unabstracted opponent, the CFR-BR strate-
gies will likely deviate from the abstract equilibrium in ways
that incur losses against an equilibrium found via CFR. Fig-
ures 8a and 8b present the in-game performance of the 2-
round trunk current and average strategies from Figures 6
and 7 against the final CFR strategy from those abstractions.
While the CFR-BR strategies are far less exploitable, they
lose to the CFR strategies that share their abstraction.

To further investigate this effect, we can also compare the
performance of CFR and CFR-BR average strategies against
a CFR strategy from a much larger abstraction. In Fig-
ure 9, we use these same CFR and CFR-BR strategies to
play games against Hyperborean2011.IRO, which uses an
abstraction 100 times larger. Even though this opponent
uses a much finer grained abstraction, the CFR strategies
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Figure 9: One-on-One performance in Texas hold’em be-
tween CFR-BR strategies in varying abstractions and the fi-
nal CFR strategy using the Hyperborean2011.IRO abstrac-
tion. Results are accurate to ±1.2 mbb/g.
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Figure 10: Convergence in Texas hold’em in three perfect
recall 10-bucket abstractions, 57 million information sets.

still lose less to this opponent than the CFR-BR strategies.
These results underscore an observation made in the analysis
of the 2010 Annual Computer Poker Competition competi-
tors: while minimizing exploitability is a well defined goal,
lower exploitability is not sufficient on its own to ensure a
victory in competition against other suboptimal opponents.

Comparing Abstractions. CFR-BR allows us to find opti-
mal strategies within an abstraction. We can use this tool,
then, to evaluate abstractions themselves. In the past, ab-
stractions were typically compared by using CFR to produce
strategies, and the one-on-one performance of these strate-
gies was used to select the “strongest” abstraction. When
real game best response calculations became feasible, the
exploitability of the CFR strategies could instead be used
to compare abstractions (Johanson et al. 2011). However,
Waugh et al. have shown that different abstract game equi-
libria can have a wide range of exploitability (Waugh et al.
2009a, Table 3), making this approach unreliable. Since
CFR-BR finds a least exploitable strategy within an abstrac-
tion, it can replace CFR in this task by directly measuring
the ability of an abstraction to represent a good approxima-
tion to a Nash equilibrium.
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Figure 11: Convergence in Texas hold’em in perfect recall
2-bucket and 3-bucket abstractions, 96056 and 476934 in-
formation sets.
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Figure 12: Convergence in Texas hold’em in the Hyper-
borean2011.IRO abstraction, 5.8 billion information sets.

Figure 10 demonstrates this abstraction comparison by
applying CFR-BR to three different 10-bucket perfect recall
abstractions. Each abstraction divides the set of hands into
equal weight buckets according to different domain features:
expected hand strength, expected hand strength squared, or
a combination of both, as described in (Johanson 2007, Page
24). While these abstractions are exactly the same size, we
found a range of 20 mbb/g – nearly 20% – by changing the
features used to create the abstraction.

Abstraction Size. While abstractions can vary in the fea-
tures used, they also naturally vary in size. In the 2011 An-
nual Computer Poker Competition entries had a hard disk
limit of 30 GB, and some of the entries use large abstractions
that fill this space. However, we first focus on the oppo-
site extreme, abstractions whose strategies are so small they
can fit on a single 1.44 MB floppy disk. Figure 11 shows
the exploitability of CFR-BR strategies in extremely small
2-bucket and 3-bucket perfect recall abstractions. Despite
their very coarse abstractions, the resulting strategies are ex-
ploitable for just 218.487 mbb/g and 175.824 mbb/g respec-
tively, and are less exploitable than most of the 2010 Annual
Computer Poker Competition strategies evaluated by Johan-
son et al. (2011).



In Figure 12 we apply CFR-BR to the large, fine-grained
abstraction used by Hyperborean2011.IRO in the 2011 An-
nual Computer Poker Competition. This abstraction has
5.8 billion information sets and uses no abstraction beyond
merging isomorphic states in the first two rounds. The turn
and river rounds have 1.5 million and 840 thousand imper-
fect recall buckets respectively. The resulting strategy is
20GB using only a single byte per probability. The Hyper-
borean2011.IRO strategy was created with CFR and was ex-
ploitable for 104.410 mbb/g, and prior to this work was the
least exploitable strategy known for the game. However, by
applying CFR-BR to this abstraction, the current strategy at
the final datapoint is exploitable for just 41.199 mbb/g and is
the new least exploitable strategy known for heads-up limit
Texas hold’em poker.

Conclusion
Although there are efficient game solving algorithms for
two-player, zero-sum games, many games are far too large
to be tractably solved. State space abstraction techniques
can be used in such cases to produce an abstract game small
enough to be tractably solved; however, recent work has
demonstrated that an equilibrium in an abstract game can
often be far more exploitable in the unabstracted game com-
pared to the least exploitable strategies that can be repre-
sented in the abstraction. In this work we presented CFR-
BR, a new game solving algorithm that converges to one
of these least exploitable abstract strategies, while avoiding
the high memory cost that made such a solution previously
intractable. We demonstrated the effectiveness of our ap-
proach in the domain of two-player limit Texas hold’em,
where it was used to generate far closer approximations to
the unknown, optimal Nash equilibrium strategy within an
abstraction than was possible using previous state-of-the-art
techniques.
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