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[2-Round, 1-Bet] Holdʼem
A small poker game where strategies can be 

quickly created and evaluated.
♣ Y-axis shows distance to Nash equilibrium
♦ Game has 16 million information sets
♠ First PCS datapoint has already converged
     closer than final CS datapoint!

[2-Round, 4-Bet] Holdʼem
A larger test domain that increases the

playersʼ action space
♣ 94 million information sets
♦ PCS curve is both lower and has a steeper
    slope
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Limit Texas Holdʼem: Abstract Best Response
♣ Real game: 10^14 information sets.  Abstraction lets us produce tractable games.
♦ Increasing abstraction granularity results in better real game strategies, but
     increases computational costs
♠ PCS surpasses CS as abstraction size increases
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5 Buckets / round
3.6m Infosets
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23.6m Infosets

10 Buckets / round
57.3m Infosets

12 Buckets / round
118.6m Infosets
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Limit Texas Holdʼem: 
In-Game Performance

♣ In large abstractions, we can evaluate by 
     in-game performance against a strong
     opponent (Hyperborean2011)

♦ Note the horizontal distance.  CS must be 
     run for much longer to reach the same 
     level of performance.
♠ Abstraction has 880m information sets.

(2,2) Bluff: Exploitability
       Bluff is a 2-player dice game.  Each player 
      secretly rolls 2 dice and players bid on
      how many of each side was rolled.

       No public chance events, so PCS does
       efficient complete traversals.

       PCSʼ curve is both lower and steeper at 
       each timestep.
      

(2,2) Bluff: In-Game Performance
       In this graph, we use the PCS and CS
      strategies to play against the final PCS
      strategy.

       PCS generates strong strategies much
       more quickly than CS.  Consider the 
       horizontal distance.

Chance Sampling 
(CS), 2007

O(1) terminal node evaluation
[2-4] speed: 1.25m iter/sec

Sample one event for us
Update our strategy considering one 
opponent private chance event.

Public Chance Sampling 
(PCS)

Possible O(n) terminal node evaluation
[2-4] speed: 709 iter/sec

Sample public chance events, but 
consider all n private events for each 
player

Opponent / Public 
Chance Sampling (OPCS)

O(n) terminal node evaluation
[2-4] speed: 1414 iter/sec 

Update all n of our chance events with 
respect to one sampled opponent event.

Self / Public 
Chance Sampling (SPCS)

O(n) terminal node evaluation
[2-4] speed: 1952 iter/sec

Sample one event for us, but update 
while considering all n opponent private 
chance events.

Slower iterations,
More updates per 
iteration

Slower iterations,
Lower variance

Same time complexity,
Lower variance

Same time complexity,
More updates per 
iteration

Counterfactual Regret 
Minimization (CFR)

In two-player zero-sum games, Nash equilibrium 
strategies (minimax strategies) are unexploitable: they 
will do no worse than tie on expectation against any 
opponent.

CFR is a state-of-the-art iterative algorithm for 
approximating Nash equilibria in two-player zero-sum 
games.  It resembles self-play over a series of T games.

By minimizing regret (improving the strategy) at each 
decision point independently, the entire strategy 
converges towards a Nash equilibrium.

CFR is memory efficient, straightforward to 
implement, and easy to optimize and parallelize.

Monte-Carlo CFR is a family of sampling variants that 
converge much faster in practice than the base 
algorithm.  This paper proposes Public Chance 
Sampling and shows that it converges faster than
earlier approaches.
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“Vanilla” CFR, 2007
In each iteration, enumerate all chance 
events and update the complete game 
tree.  Not useful in practice.

Very fast but 
noisy iterations.

Fast Terminal Node Evaluation 
(IJCAI 2011)By exploiting game structure,

a fast O(n) terminal evaluation
may be possible when comparing
n private states for each player.

This allows PCS to do the work of 
both OPCS and SPCS with the same  
time complexity!

Obvious O(n2) algorithm:

for( each of my hands x )
  for( each of their hands y )
    if( x > y )
      util[x] += payoff * P(y)
    else if( x < y )
      util[x] -= payoff * P(y)

Faster O(n) algorithm:

p_lose = total_prob;  p_win = 0;
for( each hand x ) //red arrow 
above
  p_lose -= prob[x]
  util[x] = (p_win - p_lose)*payoff
  p_win += prob[x]

Algorithm outline:
Initialize two strategies and repeatedly 
traverse the game tree.  This resembles a 
self-play algorithm.

At each decision I, use recursion to get 
the value of each action a and 
accumulate regret:

Update the strategies proportional to their 
accumulated positive regret:

Following this procedure, the average 
strategy used by the players converges 
to a Nash equilibrium.

Sampling some or all of the chance 
events lets us perform fast, noisy updates, 
and this converges faster.  We can trade 
off between:

     Iteration Speed
     Strategy updates per iteration
     Accuracy in estimating action values
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