
Efficient Nash Equilibrium Approximation through Monte
Carlo Counterfactual Regret Minimization

Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, and Michael Bowling
University of Alberta
Edmonton, Alberta

{johanson,nolan,lanctot,rggibson,bowling}@cs.ualberta.ca

ABSTRACT
Recently, there has been considerable progress towards algorithms
for approximating Nash equilibrium strategies in extensive games.
One such algorithm, Counterfactual Regret Minimization (CFR),
has proven to be effective in two-player zero-sum poker domains.
While the basic algorithm is iterative and performs a full game
traversal on each iteration, sampling based approaches are possible.
For instance, chance-sampled CFR considers just a single chance
outcome per traversal, resulting in faster but less precise iterations.
While more iterations are required, chance-sampled CFR requires
less time overall to converge. In this work, we present new sam-
pling techniques that consider sets of chance outcomes during each
traversal to produce slower, more accurate iterations. By sampling
only the public chance outcomes seen by all players, we take ad-
vantage of the imperfect information structure of the game to (i)
avoid recomputation of strategy probabilities, and (ii) achieve an
algorithmic speed improvement, performing O(n2) work at termi-
nal nodes in O(n) time. We demonstrate that this new CFR update
converges more quickly than chance-sampled CFR in the large do-
mains of poker and Bluff.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems—
Games

General Terms
Algorithms

Keywords
Economic paradigms::Game theory (cooperative and non-
cooperative)

1. INTRODUCTION
Extensive games are an intuitive formalism for modelling in-

teractions between agents in a sequential decision making setting.
One solution concept in such domains is a Nash equilibrium. In
two-player zero-sum domains, this is equivalent to a minmax strat-
egy, which minimizes each agent’s expected worst-case perfor-
mance. For games of moderate size, such a strategy can be found
using linear programming [5]. For larger games, techniques such as
Counterfactual Regret Minimization (CFR) [10] and the Excessive
Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Gap Technique [3] require less memory than linear programming
and are capable of finding an equilibrium in games (also known as
solving a game) with up to 1012 game states.

CFR is an iterative procedure that resembles self-play. On each
iteration, CFR performs a full game tree traversal and updates its
entire strategy profile to minimize regret at each decision. Theoret-
ical bounds suggest that the procedure takes a number of iterations
at most quadratic in the size of a player’s strategy [10, Theorem
4]. Thus, as we consider larger games, not only are more itera-
tions required to converge, but each traversal becomes more time
consuming. A variant known as Chance-Sampled (CS) CFR [6,
10] samples one set of chance outcomes per iteration and traverses
only the corresponding portion of the game tree. Compared to the
basic algorithm, this sampling procedure results in faster but less
precise strategy updates. In large games, the drastic reduction in
per-iteration time cost outweighs the increased number of iterations
required for convergence to an optimal strategy.

While CS considers only a single set of chance outcomes per
iteration, recent work [4] towards fast best-response computation
has shown that tree traversal and evaluation can be accelerated by
simultaneously considering sets of information sets for each player.
This allows for the caching and reuse of computed values, and also
allows a fast terminal node evaluation in which O(n2) work can of-
ten be done in O(n) time. While best response calculation in large
games was previously considered intractable, the new technique
was shown to perform the computation in just over one day [4].

In this paper, we apply this new tree traversal to CFR, result-
ing in three new sampling variants: Self-Public Chance Sampling
(SPCS), Opponent-Public Chance Sampling (OPCS), and Pub-
lic Chance Sampling (PCS). The new techniques reverse the pre-
vious trend in that they advocate less sampling: a small number
of slow iterations, each updating a large number of information
sets, yielding precise strategy updates while reusing computed val-
ues. In particular, PCS takes advantage of the computation reuse
and fast terminal node evaluation used in accelerating the best re-
sponse computation. We will prove the convergence of the new
techniques, investigate their qualities, and demonstrate empirically
that PCS converges more quickly to an equilibrium than CS in both
poker and the game of Bluff.

2. BACKGROUND
An extensive game is a general model of sequential decision-

making with imperfect information. Extensive games consist pri-
marily of a game tree whose nodes correspond to histories (se-
quences) of actions h ∈ H . Each non-terminal history, h, has an
associated player P (h) ∈ N ∪ {c} (where N is the set of play-
ers and c denotes chance) that selects an action a ∈ A(h) at that
history h. When P (h) = c, fc(a|h) is the (fixed) probability of

chance generating action a at h. We call h a prefix of history h′,
written h v h′, if h′ begins with the sequence h. Each termi-
nal history z ∈ Z ⊂ H has associated utilities for each player i,
ui(z). In imperfect information games, histories are partitioned
into information sets I ∈ Ii representing different game states
that player i cannot distinguish between. For example, in poker,
player i does not see the opponents’ private cards, and thus all his-
tories differing only in the private cards dealt to the opponents are
in the same information set for player i. For histories h, h′ ∈ I ,
the actions available at h and h′ must be the same, and we denote
this action set by A(I). We also assume perfect recall that guar-
antees players always remember information that was revealed to
them and the order in which it was revealed.

A strategy for player i, σi, is a function that maps each I ∈ Ii

to a probability distribution over A(I). We denote Σi as the set of
all strategies for player i. A strategy profile is a vector of strategies
σ = (σ1, . . . , σ|N|), one for each player. We let σ−i refer to the
strategies in σ excluding σi.

Let πσ(h) be the probability of history h occurring if all players
choose actions according to σ. We can decompose

πσ(h) =
Y
i∈N

πσ
i (h)

Y
h′avh

P (h′)=c

fc(a|h′)

into each player’s and chance’s contribution to this probability.
Here, πσ

i (h) is the contribution from player i when playing ac-
cording to σi. Let πσ

−i(h) be the product of all players’ contribu-
tion (including chance) except that of player i. Furthermore, let
πσ(h, h′) be the probability of history h′ occurring, given h has
occurred with πσ

i (h, h′), and πσ
−i(h, h′) defined similarly.

Given a strategy profile, σ, we define a player’s best response as
a strategy that maximizes their expected payoff, assuming all other
players play according to σ. The best-response value for player
i is the value of that strategy, bi(σ−i) = maxσ′i∈Σi

ui(σ
′
i, σ−i).

A strategy profile σ is an ε-Nash equilibrium if no player
can deviate from σ and gain more than ε; i.e. ui(σ) + ε ≥
maxσ′i∈Σi

ui(σ
′
i, σ−i) for all i ∈ N . If ε = 0, then σ is a Nash

equilibrium and every player is playing a best response.
In this paper, we will focus on two-player zero-sum games:

N = {1, 2} and u1(z) = −u2(z) for all z ∈ Z. In this case,
the exploitability of σ, εσ = (b1(σ2) + b2(σ1))/2, measures how
much σ loses to a worst case opponent when players alternate po-
sitions. A Nash equilibrium has an exploitability of 0.

Lastly, define C = {h ∈ H : P (h) = c} to be the set of all
histories where it is chance’s turn to act. We will assume that C can
be partitioned into three sets with respect to player i: Si, Oi, and
P . Each set contains the histories h whose actions a ∈ A(h), or
chance events, are observable only by player i (Si), only by player
i’s opponent (Oi), or by both players (P). We refer to chance
events occurring at h ∈ Si∪Oi as private and to chance events oc-
curring at h ∈ P as public. In addition, we assume that the actions
available to the players throughout the game are independent of the
private chance events. These two assumptions hold for a large class
of games, including poker as well as any Bayesian game with ob-
servable actions [8] (e.g., Bluff or negotiation games); furthermore,
games can often be modified by adding additional chance actions
to satisfy the property.

2.1 Counterfactual Regret Minimization
Counterfactual Regret Minimization (CFR) resembles a self-play

algorithm where we iteratively obtain strategy profiles σt based on
regret values accumulated throughout previous trials. At each in-
formation set I ∈ Ii, the expected value for player i at I under the

current strategy is computed, assuming player i plays to reach I .
This expectation is the counterfactual value for player i,

vi(σ, I) =
X

z∈ZI

ui(z)πσ
−i(z[I])πσ(z[I], z),

where ZI is the set of terminal histories passing through I and
z[I] is the prefix of z contained in I . For each action a ∈ A(I),
these values determine the counterfactual regrets at iteration t,
rt

i(I, a) = vi(σ
t
(I→a), I) − vi(σ

t, I), where σ(I→a) is the profile
σ except at I , action a is always taken. The regret rt

i(I, a) mea-
sures how much player i would rather play action a at I than play
σt. The counterfactual regrets are accumulated and σt is updated
by applying regret matching [2, 10] to the accumulated regrets. Re-
gret matching is a regret minimizer; i.e., over time, the average of
the counterfactual regrets approaches 0. Minimizing counterfac-
tual regret at each information set minimizes the average overall
regret [10, Theorem 3], defined by

RT
i = max

σ′∈Σi

1

T

TX
t=1

`
ui(σ

′, σt
−i)− ui(σ

t
i , σ

t
−i)
´
.

It is well-known that in a two-player zero-sum game, minimizing
average overall regret implies that the average profile σT is an ap-
proximate equilibrium. CFR produces an ε-Nash equilibrium in
O(|H||Ii|/ε2) time [10, Theorem 4].

Rather than computing the exact counterfactual values on every
iteration, one can instead sample the values using Monte Carlo
CFR (MCCFR) [6]. Chance-sampled (CS) CFR [10] is an in-
stance of MCCFR that considers just a single set of chance out-
comes per iteration. In general, letQ be a set of subsets, or blocks,
of the terminal histories Z such that the union of all blocks spans
Z. For CS,Q is the partition of Z where two histories belong to the
same block if and only if no two chance events differ. In addition,
a probability distribution over Q is required and a block Q ∈ Q is
sampled on each iteration, giving us the sampled counterfactual
value for player i,

ṽi(σ, I) =
X

z∈ZI∩Q

ui(z)πσ
−i(z[I])πσ(z[I], z)/q(z),

where q(z) is the probability that z was sampled. In CS, we sample
the blocks according to the likelihood of the chance events occur-
ring, so that

q(z) =
Y

havz
h∈C

fc(a|h).

The counterfactual regrets are then measured according to these
sampled values, as opposed to “vanilla CFR” that uses the true val-
ues vi(σ, I). Sampling reduces enumeration to the smaller subset
Q rather than all of Z, decreasing the amount of time required per
iteration. For a fixed ε, CS requires more iterations than vanilla
CFR to obtain an ε-Nash equilibrium; however, the overall com-
puting time for CS is lower in poker games [9, Appendix A.5.2].

2.2 Accelerated Traversal and Evaluation
A recent paper describes how to accelerate the computation of

the best response value in large extensive form games [4]. This
technique traverses a game’s public tree, which represents the state
of the game visible to all players. The authors observe that each
player’s strategy must be independent of the other player’s private
information. As such, a player’s action probabilities can be com-
puted just once while considering the opponent’s entire set of pos-
sible private states in one traversal.

In addition, the authors describe an efficient terminal node eval-
uation that considers a range of n information sets for each player
in tandem. If the game’s payoffs exhibit structure, then it may be

possible to exploit this structure and reduce a naive O(n2) com-
putation to O(n). Examples of structured payoffs include games
where utilities are affected by only certain factors within the play-
ers’ information sets, such as in a negotiation game, and games
where information sets can be ranked from weakest to strongest,
such as in poker. This algorithmic speedup is not being used in any
of the previously published equilibrium solvers. In Section 3, we
describe how to use these ideas to produce a new equilibrium solver
that outperforms the current state of the art.

2.3 Domains: Poker and Bluff
The Game of Poker. Our main poker game of interest is heads-
up (i.e., two-player) limit Texas hold’em poker, or simply Texas
hold’em. The game uses a standard 52 card deck and consists of
4 betting rounds. In the first round, the pre-flop, each player is
dealt two private cards. For subsequent rounds – in order, the flop,
turn, and river – public community cards are revealed (3 at the
flop and 1 at each of the turn and river). During each round, players
sequentially take one of three actions: fold (forfeit the game), call
(match the previous bet), or raise (increase the bet). There is a
maximum of 4 raises per round, each with a fixed size, where the
size is doubled on the final two rounds. If neither player folds, then
the player with the highest ranked poker hand wins all of the bets.

Texas hold’em contains approximately 3.2 × 1014 information
sets. The large size of the game makes an equilibrium computation
intractable for all known algorithms; CFR would require more than
ten petabytes of RAM and hundreds of CPU-years of computation.
A common approach is to use state-space abstraction to produce a
similar game of a tractable size by merging information sets or re-
stricting the action space [1]. In Section 4, we consider several ab-
stractions of Texas hold’em and two new variants of Texas hold’em
that are small enough to compute equilibrium solutions using CFR
without abstraction. The first new variant is [2-1] hold’em. The
game is identical to Texas hold’em, except consists of only the first
two betting rounds, the pre-flop and flop, and only one raise is al-
lowed per round. This reduces the size of the game to 16 million
information sets. Similarly, [2-4] hold’em has just two rounds, but
the full four raises are allowed per round, resulting in 94 million
information sets in total. In both [2-1] hold’em and [2-4] hold’em,
the size of a raise doubles from the pre-flop to the flop.
The Game of Bluff. Bluff, also known as Liar’s Dice, Dudo, and
Perudo, is a dice-bidding game. In our version, Bluff(D1,D2), each
die has six sides with faces 1 to 5 and a star: ?. Each player i
rolls Di of these dice and looks at them without showing them to
their opponent. On each round, players alternate by bidding on the
outcome of all dice in play until one player claims that the other
is bluffing (i.e., claims that the bid does not hold). A bid consists
of a quantity of dice and a face value. A face of ? is considered
“wild” and counts as matching any other face. For example, the bid
2-5 represents the claim that there are at least two dice with a face
of 5 or ? among both players’ dice. To place a new bid, the player
must increase either the quantity or face value of the current bid; in
addition, lowering the face is allowed if the quantity is increased.
The player calling bluff wins the round if the opponent’s last bid is
incorrect, and loses otherwise. The losing player removes one of
their dice from the game and a new round begins, starting with the
player who won the previous round. When a player has no more
dice left, they have lost the game. A utility of +1 is given for a win
and −1 for a loss.

In this paper, we restrict ourselves to the case where D1 = D2 =
2, a game containing 352 million information sets. Note that since
Bluff(2,2) is a multi-round game, the expected values of Bluff(1,1)
are precomputed for payoffs at the leaves of Bluff(2,1), which is

Chance Sampling
(CS)

My state: Scalar
Opponent State: Scalar

Self / Public
Chance Sampling

(SPCS)

My state: Scalar
Opponent State: Vector

Opponent / Public
Chance Sampling

(OPCS)

My state: Vector
Opponent State: Scalar

Public
Chance Sampling

(PCS)

My state: Vector
Opponent State: Vector

Slower iterations,
lower variance

Slower iterations,
more updates

Same speed,
lower variance

Same speed,
more updates

Figure 1: Relationship between MCCFR variants

then solved for leaf payoffs in the full Bluff(2,2) game.

3. NEW MONTE CARLO CFR VARIANTS
Before presenting our new CFR update rules, we will begin by

providing a more practical description of chance-sampled CFR. On
each iteration, we start by sampling all of chance’s actions: the
public chance events visible to each player, as well as the private
chance events that are visible to only a subset of the players. In
poker, this corresponds to randomly choosing the public cards re-
vealed to the players, and the private cards that each player is dealt.
In the game of Bluff, there are no public chance events, and only
private chance events are sampled for each player. Next, we recur-
sively traverse the portion of the game tree that is reachable given
the sampled chance events, and explore all of the players’ actions.
On the way from the root to the leaves, we pass forward two scalar
values: the probability that each player would take actions to reach
their respective information sets, given their current strategy and
their private information. On the way back from the leaves to the
root, we return a single scalar value: the sampled counterfactual
value ṽi(σ, I) for player i. At each choice node for player i, these
values are all that is needed to calculate the regret for each action
and update the strategy. Note that at a terminal node z ∈ Z, it takes
O(1) work to determine the utility for player i, ui(z).

We will now describe three different methods of sampling
chance events that have slower iterations, but do more work on
each iteration. Figure 1 shows the relationship between CS and
these three new variants, all of which belong to the MCCFR fam-
ily [6] of update rules.

Opponent-Public Chance Sampling. Consider a variation on
CS, where instead of sampling at every chance node, we sample
an action for just the opponent’s chance and the public chance
events while enumerating all of the possible outcomes at our pri-
vate chance events. We will call this variant Opponent-Public
Chance Sampling (OPCS). This can be formalized within the MC-
CFR framework by letting Q be the partition of Z such that two
histories fall into the same block if and only if the actions taken at
opponent and public chance events match. The probability that z is
sampled is then

q(z) =
Y

havz
h∈Oi∪P

fc(a|h).

Naively, we could use the same recursive tree walk that we used
for CS to perform this update, by doing one tree walk for each
of our private chance outcomes in turn. However, this update al-
lows us to traverse the sampled portion of the game tree in a much
more efficient way. Since our opponent does not observe our pri-
vate chance events, their strategy and choice of actions, given their

single sampled chance event, cannot depend on which information
set we are in. This means that we can update all of our information
sets that are consistent with the current game state and the sampled
public chance events at the same time, thus amortizing the cost of
walking the tree over many updates. This can be achieved by a new
recursive tree walk that passes forwards a vector for us (our prob-
ability of reaching the current game state with each of our private
chance outcomes) and a scalar for the opponent (their probability
of reaching the current game state with their single sampled private
chance outcome), and returns a vector of values (our counterfactual
value for each of our private chance outcomes).

At terminal nodes, we must evaluate n possible game states, each
consisting of a different private chance outcome for us and one
chance outcome for the opponent. This requires O(n) time. In
comparison to CS, each iteration of OPCS is slower, but performs
more work by updating a much larger number of information sets.

Self-Public Chance Sampling. In OPCS, we enumerate over all
of our possible private chance outcomes. Alternatively, we can in-
stead enumerate over all of our opponent’s private chance outcomes
while sampling our own private chance outcomes and the public
chance outcomes. We will call this variant Self-Public Chance
Sampling (SPCS). This can similarly be formalized by defining Q
to be the partition of Z that separates histories into different blocks
whenever the actions taken at our private or public chance events
differ, where

q(z) =
Y

havz
h∈Si∪P

fc(a|h)

is the probability of sampling terminal history z.
As in OPCS, we can use an efficient recursive tree walk to per-

form this update. Since we cannot observe the opponent’s private
chance events, our strategy and choice of actions cannot depend on
which information set they are in. Thus, when computing our coun-
terfactual value, we will consider every possible private chance out-
come for our opponent. Doing so forms a more accurate estimate of
the true counterfactual value for our sampled outcome, compared
to the noisy estimate CS and OPCS obtain through one sampled
opponent private chance outcome. The SPCS tree walk passes for-
ward a scalar for ourselves (the probability of reaching the current
game state with our single chance outcome) and a vector for the op-
ponent (their probabilities of reaching the current game state with
each of their private chance outcomes), and returns a scalar (the
counterfactual value for our sampled outcome).

At terminal nodes, we must evaluate up to n possible game
states, formed by our single chance outcome and up to n possi-
ble chance outcomes for the opponent. This requires O(n) time. In
comparison to CS, each iteration is slower and performs the same
number of updates to the strategy, but each update is based off of
much more precise estimates.

Public Chance Sampling. We will now introduce the core con-
tribution of this work, called Public Chance Sampling (PCS), that
combines the advantages of both of the previous two updates, while
taking advantage of efficient terminal node evaluation to keep the
time cost per iteration in O(n). In PCS, we sample only the pub-
lic chance events, and consider all possible private chance events
for ourself and for the opponent. In other words, we define Q to
be the partition of Z that separates histories into different blocks
whenever the actions taken at a public chance event differ, where

q(z) =
Y

havz
h∈P

fc(a|h)

is the probability of sampling z ∈ Z.

PCS relies on the property that neither us nor our opponent can
observe the other’s private chance events, and so the action prob-
abilities for each remain the same across the other’s private infor-
mation. Thus, we can perform a CFR update through a recursive
tree walk with the following structure. On the way from the root to
the leaves, we will pass forwards two vectors: one containing the
probabilities of us and one containing the probabilities of the oppo-
nent reaching the current game state, for each player’s n possible
private chance outcomes. On the way back, we will return a vector
containing the counterfactual value for each of our n information
sets.

At the terminal nodes, we seemingly have an O(n2) computa-
tion, as for each of our n information sets, we must consider all
n of the opponent’s possible private outcomes in order to compute
our utility for that information set. However, if the payoffs at termi-
nal nodes are structured in some way, we can often reduce this to an
O(n) evaluation that returns exactly the same value as the O(n2)
evaluation [4]. Doing so gives PCS the advantage of both SPCS
(accurate strategy updates) and OPCS (many strategy updates) for
the same evaluation cost of either.

3.1 Algorithm
The three new chance-sampling variants, along with CS, are

shown in Algorithm 1. The WalkTree function traverses down the
game tree by recursively concatenating actions, starting with the
empty history h = ∅, and updates player i’s regrets and average
strategy on the way back up. Two vectors are maintained, one for
player i, ~πi, and one for the opponent, ~π−i. These vectors keep
track of the probabilities of reaching each information set consis-
tent with the current history h, with each element corresponding
to a different private chance outcome for that player. In CS, both
vectors have length one (i.e., are scalars). In OPCS, ~π−i has length
one because the opponent’s private chance events are being sam-
pled. Similarly, in SPCS, ~πi has length one.

When the current sequence h is a terminal history (line 6), the
utility is computed and returned. At line 7, ~fc,i(h) and ~fc,−i(h) are
the vectors corresponding to the probability distribution over player
i’s and the opponent’s private chance outcomes, respectively, and�
represents element-wise vector multiplication. Again, one or both
vectors may have length one depending on the selected variant, in
which case the single element is always 1. For OPCS and PCS, ~ui is
a vector containing a utility for each of player i’s private outcomes;
for SPCS and CS, ~ui is a length one vector corresponding to the
utility for player i’s sampled private outcome. PCS uses the O(n2)
to O(n) algorithmic improvement to compute ~ui, which will be
described in Section 3.2.

Chance events are handled by lines 12 to 18. When one of the
four conditions at line 12 holds, we are at a chance event that is
to be sampled; otherwise, we consider all possible chance events
at h. In the latter case, we must take a dummy action (line 16)
simply to continue traversing the tree. This action has no effect on
the remainder of the tree walk due to our assumption that player
actions are independent of private chance events.

Lines 19 to 42 handle the cases where h is a decision node for
one of the players. First, lookupInfosets(h) retrieves all of the infor-
mation sets consistent with h and the current player P (h)’s range of
possible private outcomes, whether sampled (|~I| = 1) or not. Next,
at line 21, regret matching [2, 10] determines the current strategy
~σ, a vector of action probabilities for each retrieved information set
(and thus, in general, a vector of vectors). Regret matching assigns
action probabilities according to

σ[a][I] =

r+

I [a]/
P

b∈A(I) r+
I [b] if

P
b∈A(I) r+

I [b] > 0

1/|A(I)| otherwise,

Algorithm 1 PCS Algorithm
1: Require: a variant v ∈ {CS, OPCS, SPCS, PCS}.
2: Initialize regret tables: ∀I, rI [a]← 0.
3: Initialize cumulative strategy tables: ∀I, sI [a]← 0.
4:
5: function WalkTree(h, i, ~πi, ~π−i):
6: if h ∈ Z

7: return ~fc,i(h)� ~ui

“
h | ~π−i � ~fc,−i(h)

”
8: end if
9: if (v = PCS and h ∈ P)

10: or (v = SPCS and h ∈ Si ∪ P)
11: or (v = OPCS and h ∈ Oi ∪ P)
12: or (v = CS and h ∈ C)
13: Sample outcome a ∈ A(h) with probability fc(a|h)
14: return WalkTree(ha, i, ~πi, ~π−i)
15: else if h ∈ C
16: Select dummy outcome a ∈ A(h)
17: return WalkTree(ha, i, ~πi, ~π−i)
18: end if
19: ~I ← lookupInfosets(h)
20: ~u← ~0
21: ~σ ← regretMatching(~I)
22: for each action a ∈ A(h) do
23: if P (h) = i
24: ~π′i ← ~σ[a]� ~πi

25: ~u′ ←WalkTree(ha, i, ~π′i, ~π−i)
26: ~m[a]← ~u′

27: ~u← ~u + ~σ[a]� ~u′

28: else
29: ~π′−i ← ~σ[a]� ~π−i

30: ~u′ ←WalkTree(ha, i, ~πi, ~π′−i)
31: ~u← ~u + ~u′

32: end if
33: end for
34: if P (h) = i

35: for I ∈ ~I do
36: for a ∈ A(I) do
37: rI [a]← rI [a] + m[a][I]− u[I]
38: sI [a]← sI [a] + πi[I]σ[a][I]
39: end for
40: end for
41: end if
42: return ~u
43:
44: function Solve():
45: for t ∈ {1, 2, 3, · · · } do
46: for i ∈ N do
47: WalkTree(∅, i, ~1, ~1)
48: end for
49: end for

where r+
I [a] = max{rI [a], 0}. We then iterate over each action

a ∈ A(h), recursively obtaining the expected utilities for a at each
information set (line 25 or 30). When P (h) = i, these utilities are
stored (line 26) and used to update the regret at each information
set (line 37), while the current strategy ~σ weights both the returned
expected utility at h (line 27) and the average strategy update (line
38). Note that at line 31, we do not weight ~u′ by ~σ[a] since the op-
ponent’s reaching probabilities are already factored into the utility
computation (line 7).

After iterating over the outer loop of Solve() (line 45) for many
iterations, an ε-Nash equilibrium is obtained from the accumulated

strategies: σ̄(I, a) = sI [a]/
P

b∈A(I) sI [b].

3.2 Efficient Terminal Node Evaluation
We now describe how PCS computes a vector of expected utili-

ties ~ui(h | ~π−i) at line 7 for player i’s n private outcomes in O(n)
time. As we have already noted, Johanson et al. [4] gave a detailed
description for how to do this in poker. In this section, we will
describe an efficient terminal node evaluation for Bluff(D1, D2).

Every game ends with one player calling bluff, and the payoffs
(+1 or −1) are determined solely by whether or not the last bid
holds. Let x-y be the last such bid. We now must discriminate
between cases where there are less than and where there are at least
x dice showing face y or ?.

At the terminal history h, we have a vector of reach probabil-
ities ~π−i for each of the opponent’s n possible dice rolls. Let
~X−i be a vector of length D−i + 1, where the element X−i[j]
(0 ≤ j ≤ D−i) equals the probability of the opponent reaching
h with exactly j dice showing face y or ?. ~X−i is constructed in
O(n) time by iterating over each element of ~π−i, adding the prob-
ability to the appropriate entry of ~X−i at each step. We can then
compute the expected utility for player i with exactly j of his or
her dice showing face y or ?. If player i called bluff, this expected
utility is

Ui[j] =

x−j−1X
`=0

(+1) ·X−i[`] +

D−iX
`=x−j

(−1) ·X−i[`];

if the opponent called bluff, the expected utility is −Ui[j]. Con-
structing ~Ui takes O(n) time. Finally, we iterate over all k ∈
{1, ..., n} and set ui[k] = Ui[xk], where xk is the number of dice
showing face y or ? in player i’s kth private outcome. In total, the
process takes 3O(n) = O(n) time.

3.3 Theoretical Analysis
CS, OPCS, SPCS, and PCS all belong to the MCCFR family

of algorithms. As such, we can apply the general results for MC-
CFR to obtain a probabilistic bound on the average overall regret
for CS and our new algorithms. Recall that in a two-player zero-
sum game, minimizing average overall regret produces an ε-Nash
equilibrium. The proof of Theorem 1 is in the appendix.

THEOREM 1. For any p ∈ (0, 1], when using CS, OPCS, SPCS,
or PCS, with probability at least 1 − p, the average overall regret
for player i is bounded by

RT
i ≤

„
1 +

2
√

p

«
∆u,iMi

√
Ai√

T
,

where Mi is a property of the game satisfying
p
|Ii| ≤Mi ≤ |Ii|,

∆u,i = maxz,z′ |ui(z)− ui(z
′)|, and Ai = maxI∈Ii |A(I)|.

4. RESULTS
The efficacy of these new updates are examined through an em-

pirical analysis in both poker and Bluff. We begin the analysis
by examining the performance of CS, SPCS, OPCS and PCS in
two small games, [2-1] hold’em and [2-4] hold’em. We will then
present the performance of CS and PCS in a set of Texas hold’em
abstract games, to investigate their usefulness under the conditions
of the Annual Computer Poker Competition. Finally, we will apply
CS and PCS to the Bluff domain.
Poker. [2-1] hold’em and [2-4] hold’em are games that are small
enough to be tractably solved using all four of the CFR variants
we are investigating: CS, SPCS, OPCS and PCS. As discussed in
Section 3, SPCS, OPCS and PCS all perform O(n) work at each

10-2

10-1

100

101

102

103

102 103 104 105

Be
st

 re
sp

on
se

 (m
bb

/g
)

Time (seconds)

CS
OPCS
SPCS

PCS

(a) [2− 1] hold’em, 16 million information sets

10-1

100

101

102

103

104

102 103 104 105

Be
st

 re
sp

on
se

 (m
bb

/g
)

Time (seconds)

CS
OPCS
SPCS

PCS

(b) [2− 4] hold’em, 94 million information sets

Figure 2: Log-log graphs displaying convergence of best response values over time for different CFR update methods in two small
unabstracted hold’em like poker games. Best response values are in milli-big-blinds per game (mbb/g). Each curve shows the average
performance over five independent runs.

terminal state, and are thus of comparable speed. However, all three
require more time per iteration than CS, and to converge faster than
CS, the advantage of each approach (more precise updates, more
work per iteration, or both) must overcome this speed penalty.

Figure 2 shows the convergence of CS, OPCS, SPCS and PCS
towards an optimal strategy in these small hold’em variants. We
see that SPCS and OPCS converge slower than CS; the difference
in speed is too great for the higher quality iterations. However, we
find that PCS converges much more quickly than CS in these small
games.

While [2-1] hold’em and [2-4] hold’em can be tractably solved
using CFR, solving the much larger game of Texas hold’em is in-
tractable. A common procedure used by competitors in the Annual
Computer Poker Competition is to use a state-space abstraction
technique to produce a smaller, similar game that can be tractably
solved, and the resulting abstract strategy can then be used to se-
lect actions in the original game. The abstract strategy is an ε-
Nash equilibrium in the abstract game, and we can measure its rate
of convergence by calculating a best response within the abstract
game. A critical choice in this procedure is the granularity of the
abstraction. In practice, larger and finer-grained abstractions take
longer to solve, but result in better approximations to a Nash equi-
librium [4].

In Figure 3, we apply the CS and PCS algorithms to four sizes of
abstract Texas hold’em games. The abstraction technique used in
each is Percentile E[HS2], as described in [10], which merges in-
formation sets together if the chance events assign similar strength
to a player’s hand. An n-bucket abstraction branches the chance
outcomes into n categories on each round.

In the smallest abstract game in Figure 3a, we find that CS con-
verges more quickly than PCS. As we increase the abstraction gran-
ularity through Figures 3b, 3c and 3d, however, we find that PCS
matches and then surpasses CS in the rate of convergence. In each
of these games, the chance sampling component samples outcomes
in the real game and then maps this outcome to its abstract game
equivalent. When a small abstraction is used, this means that many
of the information sets being updated by PCS in one iteration will
share the same bucket, and some of the benefit of updating many
information sets at once is lost. In larger abstract games, this effect
is diminished and PCS is of more use.

In the Annual Computer Poker Competition, many competitors
submit entries that are the result of running CFR on very large ab-

stract games. Computing a best response within such abstractions,
as we did in Figure 3, is often infeasible (as many competitors use
abstractions with imperfect recall). In these circumstances, we can
instead evaluate a strategy based on its performance in actual games
against a fixed opponent. We can use this approach to evaluate the
strategies generated by CS and PCS at each time step, to investigate
how PCS and CS compare in very large games.1

The results of this experiment are presented in Figure 4. The op-
ponent in each match is Hyperborean 2010.IRO, which took third
place in the 2010 Annual Computer Poker Competition’s heads-up
limit Texas hold’em instant runoff event. The y-axis shows the av-
erage performance in milli-big-blinds per game (mbb/g) over a 10-
million hand match of duplicate poker, and the results are accurate
to±1 mbb/g (so the difference in curves is statistically significant).
The abstraction used for CS and PCS in this experiment uses im-
perfect recall and has 880 million information sets, and is similar
to but slightly larger than Hyperborean’s abstraction, which con-
tains 798 million information sets. At each time step, the strategies
produced by PCS perform better against Hyperborean than those
produced by CS. Consider the horizontal difference between points
on the curves, as this indicates the additional amount of time CS
requires to achieve the same performance as PCS. As the compe-
tition’s winner is decided based on one-on-one performance, this
result suggests that PCS is an effective choice for creating compe-
tition strategies.

Bluff. Bluff(2,2) is small enough that no abstraction is required.
Unlike poker, all of the dice rolls are private and there are no public
chance events. In this domain, one iteration of PCS is equivalent to
a full iteration of vanilla CFR (i.e., no sampling). However, the re-
ordering of the computation and the fast terminal node evaluation
allows PCS to perform the iteration more efficiently than vanilla
CFR. Figure 5 shows the convergence rates of CS and PCS in Bluff
on a log-log scale. We notice that PCS converges towards equilib-
rium significantly faster than CS does. As noted earlier, PCS has
two speed advantages: the fast terminal node evaluation, and the
ability to reuse the opponent’s probabilities of reaching an infor-
mation set for many of our own updates. By comparison, vanilla
1Another possible evaluation metric is to compute the real-game
exploitability of the strategies. However, the overfitting effect de-
scribed in [4] makes the results unclear, as a strategy can become
more exploitable in the real game as it approaches an equilibrium
in the abstract game.

10-1

100

101

102

103

101 102 103 104 105

Ab
st

ra
ct

 b
es

t r
es

po
ns

e
(m

bb
/g

)

Time (seconds)

CS
PCS

(a) 5 buckets, 3.6 million information sets

10-1

100

101

102

102 103 104 105

Ab
st

ra
ct

 b
es

t r
es

po
ns

e
(m

bb
/g

)

Time (seconds)

CS
PCS

(b) 8 buckets, 23.6 million information sets

10-1

100

101

102

102 103 104 105 106

Ab
st

ra
ct

 b
es

t r
es

po
ns

e
(m

bb
/g

)

Time (seconds)

CS
PCS

(c) 10 buckets, 57.3 million information sets

10-1

100

101

102

102 103 104 105 106

Ab
st

ra
ct

 b
es

t r
es

po
ns

e
(m

bb
/g

)

Time (seconds)

CS
PCS

(d) 12 buckets, 118.6 million information sets

Figure 3: Log-log graphs displaying convergence of abstract best response values over time for different CFR update methods in
two perfect recall abstractions of heads-up limit Texas hold’em poker. Best response values are in milli-big-blinds per game (mbb/g).
Each curve shows the average performance over five independent runs.

-50

-40

-30

-20

-10

 0

 10

 0 200000 400000 600000 800000O
ne

-o
n-

O
ne

 P
er

fo
rm

an
ce

 (m
bb

/g
)

Time (seconds)

CS
PCS

Figure 4: Performance of CS and PCS strategies in a large ab-
straction against a fixed, strong opponent.

CFR would traverse the action space 441 times to do the work of 1
PCS traversal. Similar to Figure 4 in the poker experiments, we can
also compare the performance of CS and PCS strategies against a
fixed opponent: an ε-Nash equilibrium for Bluff(2,2). This exper-
iment is presented in Figure 6, and the fixed opponent is the final
data point of the PCS line; the results are similar if the final CS data
point is used. This result shows that PCS is also more efficient than
CS at producing effective strategies for one-on-one matches.

10-4

10-3

10-2

10-1

103 104 105

Be
st

 R
es

po
ns

e

Time (seconds)

CS
PCS

Figure 5: Log-log graph showing convergence of CS and PCS
towards an equilibrium in Bluff(2,2). Each curve shows the
average performance over five independent runs.

5. CONCLUSION
Chance Sampled CFR is a state-of-the-art iterative algorithm for

approximating Nash equilibria in extensive form games. In this
work, we presented three new CFR variants that perform less sam-
pling than the standard approach. They perform slower but more
efficient and precise iterations. We empirically demonstrated that
Public Chance Sampling converges faster than Chance Sampling on

-0.08

-0.06

-0.04

-0.02

0.00

0 10000 20000 30000 40000 50000

O
ne

-o
n-

O
ne

 P
er

fo
rm

an
ce

Time (seconds)

CS
PCS

Figure 6: Performance of CS and PCS strategies against an ε-
Nash equilibrium in Bluff(2,2)

large games, resulting in a more efficient equilibrium approxima-
tion algorithm demonstrated across multiple domains. Future work
will look to tighten the theoretical bounds on the new algorithms to
prove that they can outperform Chance Sampling.

Acknowledgments
The authors would like to thank the members of the Computer
Poker Research Group at the University of Alberta for helpful con-
versations pertaining to this research. This research was supported
by NSERC, Alberta Innovates Technology Futures, and the use of
computing resources provided by WestGrid and Compute Canada.

6. REFERENCES
[1] A. Gilpin, T. Sandholm, and T. B. Sørensen. Potential-aware

automated abstraction of sequential games, and holistic
equilibrium analysis of texas hold’em poker. In Proceedings
of the Twenty-Second National Conference on Artificial
Intelligence (AAAI). AAAI Press, 2007.

[2] S. Hart and A. Mas-Colell. A simple adaptive procedure
leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000.

[3] S. Hoda, A. Gilpin, J. Peña, and T. Sandholm. Smoothing
techniques for computing nash equilibria of sequential
games. Mathematics of Operations Research,
35(2):494–512, 2010.

[4] M. Johanson, K. Waugh, M. Bowling, and M. Zinkevich.
Accelerating best response calculation in large extensive
games. In Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI), 2011.

[5] D. Koller, N. Megiddo, and B. von Stengel. Fast algorithms
for finding randomized strategies in game trees. In Annual
ACM Symposium on Theory of Computing, STOC’94, pages
750–759, 1994.

[6] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling.
Monte Carlo sampling for regret minimization in extensive
games. In Advances in Neural Information Processing
Systems 22 (NIPS), 2009.

[7] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling.
Monte Carlo sampling for regret minimization in extensive
games. Technical Report TR09-15, University of Alberta,
2009.

[8] M. Osborne and A. Rubinstein. A Course in Game Theory.
The MIT Press, 1994.

[9] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione.
Regret minimization in games with incomplete information.
Technical Report TR07-14, Department of Computing
Science, University of Alberta, 2007.

[10] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione.
Regret minimization in games with incomplete information.
In Advances in Neural Information Processing Systems 20
(NIPS), 2008.

APPENDIX
Proof of Theorem 1. Let~ai be a subsequence of a history such that
it contains only player i’s actions in that history, and let ~Ai be the
set of all such subsequences. Let Ii(~ai) be the set of all information
sets where player i’s action sequence up to that information set is
~ai. Without loss of generality, assume i = 1. Let D = C,O1 ∪
P,S1 ∪ P , or P depending on whether we are using CS, OPCS,
SPCS, or PCS respectively. The probability of sampling terminal
history z is then

q(z) =
Y

havz
h∈D

fc(a|h). (1)

Let ~ai ∈ ~Ai, B = Ii(~ai), and let Q ∈ Q. By [7, Theorem 7], it
suffices to show that

Y =
X
I∈B

0@ X
z∈ZI∩Q

πσ
−1(z[I])πσ(z[I], z)/q(z)

1A2

≤ 1.

By (1) and definition of πσ
−i, we have

Y =
X
I∈B

0BB@ X
z∈ZI∩Q

πσ
2 (z[I])πσ

1,2(z[I], z)
Y

havz
h∈C\D

fc(a|h)

1CCA
2

.

(2)
Now by the definition of Q, for each h ∈ D, there exists a unique
a∗h ∈ A(h) such that if z ∈ Q and h v z, then ha∗h v z. Next, we
define a new probability distribution on chance events according to

f̂c(a|h) =

8<: 1 if h ∈ D, a = a∗h
0 if h ∈ D, a 6= a∗h
fc(a|h) if h ∈ C\D.

Notice that
Q

havz,h∈D f̂c(a|h) is 1 if z ∈ Q and is 0 if z /∈ Q.
Thus from (2), we have

Y =
X
I∈B

0B@X
z∈ZI

πσ
2 (z[I])πσ

1,2(z[I], z)
Y

havz
h∈C

f̂c(a|h)

1CA
2

=
X
I∈B

0@X
z∈ZI

π̂σ
−1(z[I])π̂σ(z[I], z)

1A2

where π̂σ is πσ except fc is replaced by f̂c

=
X
I∈B

0@X
h∈I

π̂σ
−1(h)

X
z∈ZI

π̂σ(h, z)

1A2

=
X
I∈B

 X
h∈I

π̂σ
−1(h)

!2

≤ 1,

where the last inequality follows by [7, Lemma 16]. 2.

