Robust Strategies and Counter-Strategies Building a Champion Level Computer Poker Player

Mike Johanson

November 20, 2012

• Three new techniques for finding game theoretic strategies

- Three new techniques for finding game theoretic strategies
- Useful for poker, applicable to other domains

- Three new techniques for finding game theoretic strategies
- Useful for poker, applicable to other domains
- Show the value of these approaches through competitions against expert humans and computers

- 2 Playing to Not Lose: Counterfactual Regret Minimization
- Output Playing to Win: Frequentist Best Response
- Playing to Win, Carefully: Restricted Nash Response
- **Competition Results** 5

The Computer Poker Research Group

- The CPRG's goal: Create poker programs to beat the world's best poker players
- Martin Zinkevich and I collaborated on this work

Mike Johanson ()

The Computer Poker Research Group

- The CPRG's goal: Create poker programs to beat the world's best poker players
- Martin Zinkevich and I collaborated on this work
 - This is a huge understatement

• Poker is a collection of wagering card games

- Poker is a collection of wagering card games
- Texas Hold'em is considered to be the most strategic variant

- Poker is a collection of wagering card games
- Texas Hold'em is considered to be the most strategic variant
- Players play a series of short games against each other

- Poker is a collection of wagering card games
- Texas Hold'em is considered to be the most strategic variant
- Players play a series of short games against each other
- Goal: Win as much money as possible from opponents over this series of games

• As the game progresses, more cards are revealed

- As the game progresses, more cards are revealed
 - Private cards that only one player can see and use
 - Public cards that all players can see and use

- As the game progresses, more cards are revealed
 - Private cards that only one player can see and use
 - Public cards that all players can see and use
- Players alternate taking actions:
 - Bet: Make a wager that their cards will be the best
 - Call: Match the opponent's wager
 - Fold: Surrender this game, and begin a new one.

• So, why do we care about poker?

- So, why do we care about poker?
- Poker is stochastic and has imperfect information

- So, why do we care about poker?
- Poker is stochastic and has imperfect information
- ...like the real world

- So, why do we care about poker?
- Poker is stochastic and has imperfect information
- …like the real world
- Exploitation is important

- So, why do we care about poker?
- Poker is stochastic and has imperfect information
- …like the real world
- Exploitation is important
- Approaches for other games (such as alpha-beta) don't apply here we need to find new techniques

- So, why do we care about poker?
- Poker is stochastic and has imperfect information
- …like the real world
- Exploitation is important
- Approaches for other games (such as alpha-beta) don't apply here we need to find new techniques
- Our techniques are applicable beyond poker

 Because of hidden information, some game states are indistinguishable

- Because of hidden information, some game states are indistinguishable
- An *information set* is a set of game states that we cannot tell apart

- Because of hidden information, some game states are indistinguishable
- An *information set* is a set of game states that we cannot tell apart
- We have to play the same way for every game state in an information set

- Because of hidden information, some game states are indistinguishable
- An *information set* is a set of game states that we cannot tell apart
- We have to play the same way for every game state in an information set
- A *behavioral strategy* is a probability distribution over actions for each information set

• Poker is big — 10¹⁸ game states

- Poker is big 10¹⁸ game states
- We abstract the cards into buckets to make the size more reasonable -10^{12}

- Poker is big 10^{18} game states
- We abstract the cards into buckets to make the size more reasonable -10^{12}
- Poker strategies for the abstract game are still powerful in the "real" game, but there is a loss

2 Playing to Not Lose: Counterfactual Regret Minimization

- 3 Playing to Win: Frequentist Best Response
- Playing to Win, Carefully: Restricted Nash Response
- 5 Competition Results
- 6 Conclusion

• First approach: a strategy that works against anyone

- First approach: a strategy that works against anyone
- Nash Equilibrium: strategy for each player, where no player can do better by unilaterally changing their strategy

- First approach: a strategy that works against anyone
- Nash Equilibrium: strategy for each player, where no player can do better by unilaterally changing their strategy
- Approximation to a Nash equilibrium: no player can do better than ϵ by switching

• Unbeatable (within its abstraction)

э

- Unbeatable (within its abstraction)
- The strategy can win if the opponent makes mistakes
- Unbeatable (within its abstraction)
- The strategy can win if the opponent makes mistakes
- ...thus "playing to not lose"

- Unbeatable (within its abstraction)
- The strategy can win if the opponent makes mistakes
- ...thus "playing to not lose"
- (We still use these strategies to win)

- Unbeatable (within its abstraction)
- The strategy can win if the opponent makes mistakes
- ...thus "playing to not lose"
- (We still use these strategies to win)
- Can be found through linear programming, requires memory proportional to number of game states

- Unbeatable (within its abstraction)
- The strategy can win if the opponent makes mistakes
- ...thus "playing to not lose"
- (We still use these strategies to win)
- Can be found through linear programming, requires memory proportional to number of game states
- Counterfactual Regret Minimization requires memory proportional to number of *information sets* much smaller.

- Unbeatable (within its abstraction)
- The strategy can win if the opponent makes mistakes
- ...thus "playing to not lose"
- (We still use these strategies to win)
- Can be found through linear programming, requires memory proportional to number of game states
- Counterfactual Regret Minimization requires memory proportional to number of *information sets* much smaller.
- $\bullet\,$ Poker has $3.16*10^{17}$ game states and $3.19*10^{14}$ information sets

• Play T games of poker, updating your strategy on each round

- Play T games of poker, updating your strategy on each round
- Find the best strategy you could have used for all of those games

- Play T games of poker, updating your strategy on each round
- Find the best strategy you could have used for all of those games
- Define Average Overall Regret as: $\frac{1}{T}\sum_{t=1}^{T} ((Value of best strategy) - (Value of your strategy))$

- Play T games of poker, updating your strategy on each round
- Find the best strategy you could have used for all of those games
- Define Average Overall Regret as: $\frac{1}{T}\sum_{t=1}^{T} ((Value of best strategy) - (Value of your strategy))$
- If we minimize Average Overall Regret, the *average strategy* used over the T games approaches a Nash equilibrium

- Play T games of poker, updating your strategy on each round
- Find the best strategy you could have used for all of those games
- Define Average Overall Regret as: $\frac{1}{T}\sum_{t=1}^{T} ((Value of best strategy) - (Value of your strategy))$
- If we minimize Average Overall Regret, the *average strategy* used over the T games approaches a Nash equilibrium
- How do we minimize Average Overall Regret?

• Break down overall regret into the regret for each action at each information set

- Break down overall regret into the regret for each action at each information set
- Regret: How much *more* utility we could have had if we always took some action instead of using our strategy

- Break down overall regret into the regret for each action at each information set
- Regret: How much *more* utility we could have had if we always took some action instead of using our strategy
- Immediate Counterfactual Regret: Weight this regret by the probability of the opponent reaching the information set

- Break down overall regret into the regret for each action at each information set
- Regret: How much *more* utility we could have had if we always took some action instead of using our strategy
- Immediate Counterfactual Regret: Weight this regret by the probability of the opponent reaching the information set
- Average Overall Regret is less than the sum of Immediate Counterfactual Regret

- Break down overall regret into the regret for each action at each information set
- Regret: How much *more* utility we could have had if we always took some action instead of using our strategy
- Immediate Counterfactual Regret: Weight this regret by the probability of the opponent reaching the information set
- Average Overall Regret is less than the sum of Immediate Counterfactual Regret
- So, if we can minimize our immediate counterfactual regret *at each information set* , then we approach a Nash equilibrium

• Initialize the strategies' action probabilities to a uniform distribution

- Initialize the strategies' action probabilities to a uniform distribution
- Repeat:
 - (General) Iterate over all chance outcomes

- Initialize the strategies' action probabilities to a uniform distribution
- Repeat:
 - (General) Iterate over all chance outcomes
 - (Poker-specific) Deal cards to each player, as if playing the game

- Initialize the strategies' action probabilities to a uniform distribution
- Repeat:
 - (General) Iterate over all chance outcomes
 - (Poker-specific) Deal cards to each player, as if playing the game
 - Recurse over all choice nodes. Update the action probabilities at each choice node to minimize regret at that node.

- Initialize the strategies' action probabilities to a uniform distribution
- Repeat:
 - (General) Iterate over all chance outcomes
 - (Poker-specific) Deal cards to each player, as if playing the game
 - Recurse over all choice nodes. Update the action probabilities at each choice node to minimize regret at that node.
- How do we update the action probabilities after each game?

< 🗇 🕨

► < Ξ ►</p>

æ

• Compute expected value of each action

• Strategy's EV: 4

э

- Compute expected value of each action
- Calculate the *regret* for not taking each action
 (Regret: Difference between the EV for taking an action and the strategy's EV)

- Strategy's EV: 4
- Regret: (-7, 2, 5)

- Compute expected value of each action
- Calculate the *regret* for not taking each action
- (Regret: Difference between the EV for taking an action and the strategy's EV)
- ⁽³⁾ Counterfactual Regret: Regret weighted by opponent's probability of reaching this state
 - Add up Counterfactual Regret over all games

- Strategy's EV: 4
- Regret: (-7, 2, 5)
- Total CFR: (-3.5, 1, 2.5)

- Compute expected value of each action
- Calculate the *regret* for not taking each action
- (Regret: Difference between the EV for taking an action and the strategy's EV)
- Raise (1/3) Counterfactual Regret: Regret weighted by opponent's probability of reaching this state
 - Add up Counterfactual Regret over all games
 - Assign new probabilities proportional to accumulated positive CFR
 - Strategy's EV: 4
 - Regret: (-7, 2, 5)
 - Total CFR: (-3.5, 1, 2.5)
 - New Probabilities: (0, 0.3, 0.7)

3. 3

< 🗇 🕨

- 一司

э.

3

э

()

- Strategy's EV: -8.1
- Regret: (5.1, 2.1, -0.9)
- Total CFR: (1.6, 3.1, 1.6)
- New Probabilities: (0.25, 0.5, 0.25)

• Counterfactual Regret Minimization approaches a Nash equilibrium - how fast does it get there?

- Counterfactual Regret Minimization approaches a Nash equilibrium how fast does it get there?
 - General: # iterations grows quadratically with # information sets

- Counterfactual Regret Minimization approaches a Nash equilibrium how fast does it get there?
 - $\bullet\,$ General: # iterations grows quadratically with # information sets
 - Poker: # iterations grows *linearly* with # information sets

- Counterfactual Regret Minimization approaches a Nash equilibrium how fast does it get there?
 - General: # iterations grows quadratically with # information sets
 - Poker: # iterations grows *linearly* with # information sets
 - (Because seeing a few samples of the states in an information set is enough to choose a good strategy for that information set)

- Counterfactual Regret Minimization approaches a Nash equilibrium how fast does it get there?
 - $\bullet~$ General: # iterations grows quadratically with # information sets
 - Poker: # iterations grows *linearly* with # information sets
 - (Because seeing a few samples of the states in an information set is enough to choose a good strategy for that information set)
- In practical terms: we can solve very large games (10¹² states) in under two weeks
- That's two orders of magnitude larger than was previously possible

Convergence to a Nash Equilibrium

	Hyperborean	Bluffbot	Monash	Teddy	Average
Smallbot2298	61	113	695	474	336
CFR8	106	170	746	517	385

Counterfactual Regret Minimization: Conclusions

• Approaches Nash Equilibria faster and with less memory than older techniques

Counterfactual Regret Minimization: Conclusions

- Approaches Nash Equilibria faster and with less memory than older techniques
- The resulting strategies are *robust* they work well against any opponent

Counterfactual Regret Minimization: Conclusions

- Approaches Nash Equilibria faster and with less memory than older techniques
- The resulting strategies are *robust* they work well against any opponent
- But... How exploitable are the opponents?

- Approaches Nash Equilibria faster and with less memory than older techniques
- The resulting strategies are robust they work well against any opponent
- But... How exploitable are the opponents?
- How much better could an exploitive strategy do?

- Approaches Nash Equilibria faster and with less memory than older techniques
- The resulting strategies are *robust* they work well against any opponent
- But... How exploitable are the opponents?
- How much better could an exploitive strategy do?
- "Playing to Not Lose"

Output Playing to Win: Frequentist Best Response

• Best Response: best possible counter-strategy to some strategy

- Best Response: best possible counter-strategy to some strategy
- Useful for a few reasons:
 - Tells you how exploitable that strategy is
 - Could use it during a match to win

• "real" best response is intractable

- "real" best response is intractable
- abstract game best response is easy, but has some challenges:
 - Need to actually have the opponent's strategy
 - Resulting counter-strategy plays in the same abstraction as the strategy

- "real" best response is intractable
- abstract game best response is easy, but has some challenges:
 - Need to actually have the opponent's strategy
 - Resulting counter-strategy plays in the same abstraction as the strategy
 - (Bigger abstraction == better counter-strategy)

- We'd like to make best response counter-strategies with fewer restrictions:
 - What if we don't have the actual strategy, only observations?
 - What if we want to choose the abstraction that the counter-strategy uses?

• Observe lots of real-game data — say, 1 million hands

- Observe lots of real-game data say, 1 million hands
- Abstract the data, and do frequency counts on how often actions are taken in each choice node

- Observe lots of real-game data say, 1 million hands
- Abstract the data, and do frequency counts on how often actions are taken in each choice node
- Construct an opponent model, where action probabilities are just the action frequencies

- Observe lots of real-game data say, 1 million hands
- Abstract the data, and do frequency counts on how often actions are taken in each choice node
- Construct an opponent model, where action probabilities are just the action frequencies
- Find the abstract game best response to the opponent model

- Observe lots of real-game data say, 1 million hands
- Abstract the data, and do frequency counts on how often actions are taken in each choice node
- Construct an opponent model, where action probabilities are just the action frequencies
- Find the abstract game best response to the opponent model
- Use the counter-strategy to play against the strategy in the real game

Abstracting the data

Mike Johanson ()

November 20, 2012

28 / 65

3

• There's a few variables you need to get right:

- There's a few variables you need to get right:
 - Who is the strategy playing against for the million hands? (Self play is bad, because it doesn't explore the whole strategy space)
 - What do you do in states you never observe? (We assume they call)

November 20, 2012

	PsOpti4	PsOpti6	Attack60	Attack80	Smallbot1239	Smallbot1399	Smallbot2298	CFR5	Average
FBR-PsOpti4	137	-163	-227	-231	-106	-85	-144	-210	-129
FBR-PsOpti6	-79	330	-68	-89	-36	-23	-48	-97	-14
FBR-Attack60	-442	-499	2170	-701	-359	-305	-377	-620	-142
FBR-Attack80	-312	-281	-557	1048	-251	-231	-266	-331	-148
FBR-Smallbot1239	-20	105	-89	-42	106	91	-32	-87	3
FBR-Smallbot1399	-43	38	-48	-77	75	118	-46	-109	-11
FBR-Smallbot2298	-39	51	-50	-26	42	50	33	-41	2
CFR5	36	123	93	41	70	68	17	0	56
Max	137	330	2170	1048	106	118	33	0	

- Columns are poker strategies we've produced in the past
- Rows are counter-strategies to each strategy
- CFR5 is a Counterfactual Regret Minimization strategy

	PsOpti4	PsOpti6	Attack60	Attack80	Smallbot1239	Smallbot1399	Smallbot2298	CFR5	Average
FBR-PsOpti4	137	-163	-227	-231	-106	-85	-144	-210	-129
FBR-PsOpti6	-79	330	-68	-89	-36	-23	-48	-97	-14
FBR-Attack60	-442	-499	2170	-701	-359	-305	-377	-620	-142
FBR-Attack80	-312	-281	-557	1048	-251	-231	-266	-331	-148
FBR-Smallbot1239	-20	105	-89	-42	106	91	-32	-87	3
FBR-Smallbot1399	-43	38	-48	-77	75	118	-46	-109	-11
FBR-Smallbot2298	-39	51	-50	-26	42	50	33	-41	2
CFR5	36	123	93	41	70	68	17	0	56
Max	137	330	2170	1048	106	118	33	0	

- Columns are poker strategies we've produced in the past
- Rows are counter-strategies to each strategy
- CFR5 is a Counterfactual Regret Minimization strategy
- Two observations:
 - The diagonal has the matches where the counter-strategy plays against its intended opponent. These scores are all good significantly higher than the CFR strategy does
 - Everything off the diagonal is horrible

• "Playing to Win"

- "Playing to Win"
- Frequentist Best Response counter-strategies are useful for defeating specific opponents

- "Playing to Win"
- Frequentist Best Response counter-strategies are useful for defeating specific opponents
- We also use them to evaluate our strategies, to see how weak they are

- "Playing to Win"
- Frequentist Best Response counter-strategies are useful for defeating specific opponents
- We also use them to evaluate our strategies, to see how weak they are
- However, they are *brittle* when used against other opponens, even weak ones, they can lose badly.

- "Playing to Win"
- Frequentist Best Response counter-strategies are useful for defeating specific opponents
- We also use them to evaluate our strategies, to see how weak they are
- However, they are *brittle* when used against other opponens, even weak ones, they can lose badly.
- Is there a way to keep the exploitiveness of FBR counter-strategies, while also gaining the robustness of CFR strategies?

1 Introduction

- 2 Playing to Not Lose: Counterfactual Regret Minimization
- **3** Playing to Win: Frequentist Best Response

Playing to Win, Carefully: Restricted Nash Response

5 Competition Results

6 Conclusion

• Exploiting opponents is important — we'd like to win more money than the Counterfactual Regret Minimization strategies do

- Exploiting opponents is important we'd like to win more money than the Counterfactual Regret Minimization strategies do
- Frequentist Best Response strategies win lots of money, but are terrible against the wrong opponent

- Exploiting opponents is important we'd like to win more money than the Counterfactual Regret Minimization strategies do
- Frequentist Best Response strategies win lots of money, but are terrible against the wrong opponent
- We'd like a compromise: a strategy that exploits an opponent (or class of opponents), but is also *robust* against arbitrary opponents

• We suspect our opponent will use some strategy

- We suspect our opponent will use some strategy
- What if they only used it, say, 75% of the time?

- We suspect our opponent will use some strategy
- What if they only used it, say, 75% of the time?
- The other 25% of the time, they can do anything...
- We suspect our opponent will use some strategy
- What if they only used it, say, 75% of the time?
- The other 25% of the time, they can do anything...
- ...but lets assume they play a best response to whatever we do

- We suspect our opponent will use some strategy
- What if they only used it, say, 75% of the time?
- The other 25% of the time, they can do anything...
- ...but lets assume they play a best response to whatever we do
- We now have two goals: attack the 75% "weak" strategy, and defend against the 25% "adaptive" strategy

• In CFR, we had two strategies that adapt to beat each other

< 47 ▶

3

- In CFR, we had two strategies that adapt to beat each other
- In RNR, we have one strategy for our player, and two for our opponent

- In CFR, we had two strategies that adapt to beat each other
- In RNR, we have one strategy for our player, and two for our opponent
- The opponent's static strategy is the model we get from Frequentist Best Response

- In CFR, we had two strategies that adapt to beat each other
- In RNR, we have one strategy for our player, and two for our opponent
- The opponent's static strategy is the model we get from Frequentist Best Response
- We play millions of games, where our player minimizes regret when playing against both the static and adaptive opponent

- In CFR, we had two strategies that adapt to beat each other
- In RNR, we have one strategy for our player, and two for our opponent
- The opponent's static strategy is the model we get from Frequentist Best Response
- We play millions of games, where our player minimizes regret when playing against both the static and adaptive opponent
- The adaptive opponent minimizes regret when playing against us

- "Restricted Nash Response": our opponent is *restricted* to playing the static strategy some of the time.
- We approach a Nash equilibrium in this restricted game.

• In the last example, we said the opponent uses the static strategy 75% of the time

3

- In the last example, we said the opponent uses the static strategy 75% of the time
- This is actually just a variable, p.

- In the last example, we said the opponent uses the static strategy 75% of the time
- This is actually just a variable, p.
- Interpretations of *p*:
 - How much you care about exploiting the static strategy
 - How confident you are that the opponent will actually use the static strategy

- If *p* is low, then the resulting counter-strategy is more like a Nash equilibrium
- If *p* is high, then the resulting counter-strategy is more like a best response

- X-Axis: How exploitable the counter-strategy is
- Y-Axis: How much we beat the opponent
- Labels: The value of p used to generate the strategy

Mike Johanson ()

- Don't use a Nash equilibrium you can win a lot by giving up a tiny amount!
- Don't use a Best Response you can save a lot by giving up a tiny amount!

Restricted Nash Response: Results

	PsOpti4	PsOpti6	Attack60	Attack80	Smallbot1239	Smallbot1399	Smallbot2298	CFR5	Average
FBR-PsOpti4	137	-163	-227	-231	-106	-85	-144	-210	-129
FBR-PsOpti6	-79	330	-68	-89	-36	-23	-48	-97	-14
FBR-Attack60	-442	-499	2170	-701	-359	-305	-377	-620	-142
FBR-Attack80	-312	-281	-557	1048	-251	-231	-266	-331	-148
FBR-Smallbot1239	-20	105	-89	-42	106	91	-32	-87	3
FBR-Smallbot1399	-43	38	-48	-77	75	118	-46	-109	-11
FBR-Smallbot2298	-39	51	-50	-26	42	50	33	-41	2
CFR5	36	123	93	41	70	68	17	0	56
Max	137	330	2170	1048	106	118	33	0	

Frequentist Best Response:

Restricted Nash Response:

	Opponents								
	PsOpti4	PsOpti6	Attack60	Attack80	Smallbot1239	Smallbot1399	Smallbot2298	CFR5	Average
RNR-PsOpti4	85	112	39	9	63	61	-1	-23	43
RNR-PsOpti6	26	234	72	34	59	59	1	-28	57
RNR-Attack60	-17	63	582	-22	37	39	-9	-45	78
RNR-Attack80	-7	66	22	293	11	12	0	-29	46
RNR-Smallbot1239	38	130	68	31	111	106	9	-20	59
RNR-Smallbot1399	31	136	66	29	105	112	6	-24	58
RNR-Smallbot2298	21	137	72	30	77	76	31	-11	54
CFR5	36	123	93	41	70	68	17	0	56
Max	85	234	582	293	111	112	31	0	= ~~

Mike Johanson ()

Robust Strategies and Counter-Strategies

November 20, 2012

• "Playing to Win, Carefully"

- "Playing to Win, Carefully"
- Restricted Nash Response makes robust counter-strategies

- "Playing to Win, Carefully"
- Restricted Nash Response makes *robust* counter-strategies
- Exploits one opponent, minimizes weakness against all others

- "Playing to Win, Carefully"
- Restricted Nash Response makes *robust* counter-strategies
- Exploits one opponent, minimizes weakness against all others
- If you ever have to compute a best response offline, you can do this instead. It's not so bad if you're right, and a life saver if you're wrong.

1 Introduction

- 2 Playing to Not Lose: Counterfactual Regret Minimization
- 3 Playing to Win: Frequentist Best Response
- Playing to Win, Carefully: Restricted Nash Response
- **5** Competition Results

6 Conclusion

• We competed in two competitions at AAAI this year:

- We competed in two competitions at AAAI this year:
- Second AAAI Computer Poker Competition
 - 3 events, 15 competitors, 43 bots
 - Used CFR strategies to get a 1st, a 2nd, and a 3rd

- We competed in two competitions at AAAI this year:
- Second AAAI Computer Poker Competition
 - 3 events, 15 competitors, 43 bots
 - Used CFR strategies to get a 1st, a 2nd, and a 3rd
- First Man-Machine Poker Championship
 - Played against two poker pros, Phil Laak and Ali Eslami
 - Used CFR and RNR strategies to win one, tie one, and lose two
 - Post-game analysis suggests a different result

1 Introduction

- 2 Playing to Not Lose: Counterfactual Regret Minimization
- 3 Playing to Win: Frequentist Best Response
- Playing to Win, Carefully: Restricted Nash Response
- 5 Competition Results

3 new techniques for stochastic, imperfect information games:

- Counterfactual Regret Minimization
 - "Playing to Not Lose"
- Frequentist Best Response
 - "Playing to Win"

- Restricted Nash Response
 - "Playing to Win, Carefully"

3 new techniques for stochastic, imperfect information games:

- Counterfactual Regret Minimization
 - "Playing to Not Lose"
 - Approximate Nash Equilibrium strategies
 - Runs faster and with lower memory requirements than past techniques
- Frequentist Best Response
 - "Playing to Win"

- Restricted Nash Response
 - "Playing to Win, Carefully"

- 3 new techniques for stochastic, imperfect information games:
 - Counterfactual Regret Minimization
 - "Playing to Not Lose"
 - Approximate Nash Equilibrium strategies
 - Runs faster and with lower memory requirements than past techniques
 - Frequentist Best Response
 - "Playing to Win"
 - Finds exploitive counter-strategies for specific opponents
 - Useful for finding maximum exploitability of an opponent
 - Brittle when used against other opponents
 - Restricted Nash Response
 - "Playing to Win, Carefully"

- 3 new techniques for stochastic, imperfect information games:
 - Counterfactual Regret Minimization
 - "Playing to Not Lose"
 - Approximate Nash Equilibrium strategies
 - Runs faster and with lower memory requirements than past techniques
 - Frequentist Best Response
 - "Playing to Win"
 - Finds exploitive counter-strategies for specific opponents
 - Useful for finding maximum exploitability of an opponent
 - Brittle when used against other opponents

• Restricted Nash Response

- "Playing to Win, Carefully"
- Finds robust counter-strategies for specific opponents
- Useful for exploiting a suspected tendency
- Robust when used against other opponents

- 3 new techniques for stochastic, imperfect information games:
 - Counterfactual Regret Minimization
 - "Playing to Not Lose"
 - Approximate Nash Equilibrium strategies
 - Runs faster and with lower memory requirements than past techniques
 - Frequentist Best Response
 - "Playing to Win"
 - Finds exploitive counter-strategies for specific opponents
 - Useful for finding maximum exploitability of an opponent
 - Brittle when used against other opponents
 - Restricted Nash Response
 - "Playing to Win, Carefully"
 - Finds robust counter-strategies for specific opponents
 - Useful for exploiting a suspected tendency
 - Robust when used against other opponents
 - We proved the value of these techniques through competitive play

• There's another Computer Poker Competition next year, and we're hoping for another Man-Machine match

- There's another Computer Poker Competition next year, and we're hoping for another Man-Machine match
- We have many directions to take this work
 - Better ways to manage a team of strategies
 - Counter-strategies that exploit a wide variety of opponents
 - ...and many other parts of the problem

- There's another Computer Poker Competition next year, and we're hoping for another Man-Machine match
- We have many directions to take this work
 - Better ways to manage a team of strategies
 - Counter-strategies that exploit a wide variety of opponents
 - ...and many other parts of the problem
- The CFR and RNR techniques described in this thesis are iterative
 - The longer you run the program, the better they get
 - Over the next year, we can produce much stronger poker programs
 - The quality of human play will not improve much this year

- There's another Computer Poker Competition next year, and we're hoping for another Man-Machine match
- We have many directions to take this work
 - Better ways to manage a team of strategies
 - Counter-strategies that exploit a wide variety of opponents
 - ...and many other parts of the problem
- The CFR and RNR techniques described in this thesis are iterative
 - The longer you run the program, the better they get
 - Over the next year, we can produce much stronger poker programs
 - The quality of human play will not improve much this year
- The next Man-Machine match might have a different outcome!

Questions?

November 20, 2012

э

• Second year it's been run

- Second year it's been run
- Last year: 2 events, 5 competitors, 5 bots
- This year: 3 events, 15 competitors, 43 bots
- Second year it's been run
- Last year: 2 events, 5 competitors, 5 bots
- This year: 3 events, 15 competitors, 43 bots
- 3 Events:
 - Heads-Up Limit Equilibrium
 - Heads-Up Limit Online Learning
 - Heads-Up No-Limit

• Winner determined by total matches (not dollars!) won

	Hyperborean07EQ	lanBot	GS3	PokeMinn	Quick	Gomel-2	DumboEQ	DumboEQ-2	Sequel	Sequel-2	PokeMinn-2	UNCC	Gomel	LeRenard	MonashBPP	MilanoEQ	Average
Hyperborean07EQ		21	32	136	115	110	193	182	165	166	131	454	115	138	465	428	194
lanBot	-21		4	130	99	85	142	119	131	140	142	472	88	130	408	398	164
GS3	-32	-4		150	73	112	160	149	140	148	154	467	107	142	412	445	175
PokeMinn	-136	-130	-150		40	144	80	76	-33	-22	-24	373	265	127	627	421	111
Quick	-115	-99	-73	-40		19	235	135	125	121	134	298	149	15	564	489	131
Gomel-2	-110	-85	-112	-144	-19		206	200	135	150	16	275	232	136	802	859	169
DumboEQ	-193	-142	-160	-80	-235	-206		133	67	64	55	23	300	13	774	672	72
DumboEQ-2	-182	-119	-149	-76	-135	-200	-133		87	82	83	-52	271	54	808	762	74
Sequel	-165	-131	-140	33	-125	-135	-67	-87		19	130	167	-17	92	556	556	46
Sequel-2	-166	-140	-148	22	-121	-150	-64	-82	-19		125	174	-4	74	583	526	41
PokeMinn-2	-131	-142	-154	24	-134	-16	-55	-83	-130	-125		96	123	60	770	748	57
UNCC	-454	-472	-467	-373	-298	-275	-23	52	-167	-174	-96		95	-281	553	503	-125
Gomel	-115	-88	-107	-265	-149	-232	-300	-271	17	4	-123	-95		96	779	993	10
LeRenard	-138	-130	-142	-127	-15	-136	-13	-54	-92	-74	-60	281	-96		478	354	2
MonashBPP	-465	-408	-412	-627	-564	-802	-774	-808	-556	-583	-770	-553	-779	-478		489	-539
MilanoEQ	-428	-398	-445	-421	-489	-859	-672	-762	-556	-526	-748	-503	-993	-354	-489		-576

- Winner determined by total matches (not dollars!) won
- Emphasizes winning, not exploiting

	Hyperborean07EQ	lanBot	GS3	PokeMinn	Quick	Gomel-2	DumboEQ	DumboEQ-2	Sequel	Sequel-2	PokeMinn-2	UNCC	Gomel	LeRenard	MonashBPP	MilanoEQ	Average
Hyperborean07EQ		21	32	136	115	110	193	182	165	166	131	454	115	138	465	428	194
lanBot	-21		4	130	99	85	142	119	131	140	142	472	88	130	408	398	164
GS3	-32	-4		150	73	112	160	149	140	148	154	467	107	142	412	445	175
PokeMinn	-136	-130	-150		40	144	80	76	-33	-22	-24	373	265	127	627	421	111
Quick	-115	-99	-73	-40		19	235	135	125	121	134	298	149	15	564	489	131
Gomel-2	-110	-85	-112	-144	-19		206	200	135	150	16	275	232	136	802	859	169
DumboEQ	-193	-142	-160	-80	-235	-206		133	67	64	55	23	300	13	774	672	72
DumboEQ-2	-182	-119	-149	-76	-135	-200	-133		87	82	83	-52	271	54	808	762	74
Sequel	-165	-131	-140	33	-125	-135	-67	-87		19	130	167	-17	92	556	556	46
Sequel-2	-166	-140	-148	22	-121	-150	-64	-82	-19		125	174	-4	74	583	526	41
PokeMinn-2	-131	-142	-154	24	-134	-16	-55	-83	-130	-125		96	123	60	770	748	57
UNCC	-454	-472	-467	-373	-298	-275	-23	52	-167	-174	-96		95	-281	553	503	-125
Gomel	-115	-88	-107	-265	-149	-232	-300	-271	17	4	-123	-95		96	779	993	10
LeRenard	-138	-130	-142	-127	-15	-136	-13	-54	-92	-74	-60	281	-96		478	354	2
MonashBPP	-465	-408	-412	-627	-564	-802	-774	-808	-556	-583	-770	-553	-779	-478		489	-539
MilanoEQ	-428	-398	-445	-421	-489	-859	-672	-762	-556	-526	-748	-503	-993	-354	-489		-576

- Winner determined by total matches (not dollars!) won
- Emphasizes winning, not exploiting
- Took first place, using a CFR bot

	Hyperborean07EQ	lanBot	GS3	PokeMinn	Quick	Gomel-2	DumboEQ	DumboEQ-2	Sequel	Sequel-2	PokeMinn-2	UNCC	Gomel	LeRenard	MonashBPP	MilanoEQ	Average
Hyperborean07EQ		21	32	136	115	110	193	182	165	166	131	454	115	138	465	428	194
lanBot	-21		4	130	99	85	142	119	131	140	142	472	88	130	408	398	164
G53	-32	-4		150	73	112	160	149	140	148	154	467	107	142	412	445	175
PokeMinn	-136	-130	-150		40	144	80	76	-33	-22	-24	373	265	127	627	421	111
Quick	-115	-99	-73	-40		19	235	135	125	121	134	298	149	15	564	489	131
Gomel-2	-110	-85	-112	-144	-19		206	200	135	150	16	275	232	136	802	859	169
DumboEQ	-193	-142	-160	-80	-235	-206		133	67	64	55	23	300	13	774	672	72
DumboEQ-2	-182	-119	-149	-76	-135	-200	-133		87	82	83	-52	271	54	808	762	74
Sequel	-165	-131	-140	33	-125	-135	-67	-87		19	130	167	-17	92	556	556	46
Sequel-2	-166	-140	-148	22	-121	-150	-64	-82	-19		125	174	-4	74	583	526	41
PokeMinn-2	-131	-142	-154	24	-134	-16	-55	-83	-130	-125		96	123	60	770	748	57
UNCC	-454	-472	-467	-373	-298	-275	-23	52	-167	-174	-96		95	-281	553	503	-125
Gomel	-115	-88	-107	-265	-149	-232	-300	-271	17	4	-123	-95		96	779	993	10
LeRenard	-138	-130	-142	-127	-15	-136	-13	-54	-92	-74	-60	281	-96		478	354	2
MonashBPP	-465	-408	-412	-627	-564	-802	-774	-808	-556	-583	-770	-553	-779	-478		489	-539
MilanoEQ	-428	-398	-445	-421	-489	-859	-672	-762	-556	-526	-748	-503	-993	-354	-489		-576

• Winner determined by total winnings (in dollars)

	Hyperborean07OL-2	Hyperborean07OL	GS3	lanBot	Quick	Gomel-2	PokeMinn	Sequel	Sequel-2	LeRenard	DumboOL-2	Average
Hyperborean07OL-2		-37	-27	-37	138	155	172	166	178	170	259	114
Hyperborean07OL	37		21	27	116	108	141	153	175	132	207	112
GS3	27	-21		6	73	112	150	140	148	142	199	98
lanBot	37	-27	-6		99	85	130	131	140	130	157	87
Quick	-138	-116	-73	-99		19	-40	125	121	15	129	-6
Gomel-2	-155	-108	-112	-85	-19		-144	135	150	136	123	-8
PokeMinn	-172	-141	-150	-130	40	144		-33	-22	127	-15	-35
Sequel	-166	-153	-140	-131	-125	-135	33		19	92	-1	-71
Sequel-2	-178	-175	-148	-140	-121	-150	22	-19		74	17	-82
LeRenard	-170	-132	-142	-130	-15	-136	-127	-92	-74		21	-100
DumboOL-2	-259	-207	-199	-157	-129	-123	15	1	-17	-21		-110

- Winner determined by total winnings (in dollars)
- Took second place with a CFR bot. We just barely lost to...

	Hyperborean07OL-2	Hyperborean07OL	GS3	lanBot	Quick	Gomel-2	PokeMinn	Sequel	Sequel-2	LeRenard	DumboOL-2	Average
Hyperborean07OL-2		-37	-27	-37	138	155	172	166	178	170	259	114
Hyperborean07OL	37		21	27	116	108	141	153	175	132	207	112
GS3	27	-21		6	73	112	150	140	148	142	199	98
lanBot	37	-27	-6		99	85	130	131	140	130	157	87
Quick	-138	-116	-73	-99		19	-40	125	121	15	129	-6
Gomel-2	-155	-108	-112	-85	-19		-144	135	150	136	123	-8
PokeMinn	-172	-141	-150	-130	40	144		-33	-22	127	-15	-35
Sequel	-166	-153	-140	-131	-125	-135	33		19	92	-1	-71
Sequel-2	-178	-175	-148	-140	-121	-150	22	-19		74	17	-82
LeRenard	-170	-132	-142	-130	-15	-136	-127	-92	-74		21	-100
DumboOL-2	-259	-207	-199	-157	-129	-123	15	1	-17	-21		-110

- Winner determined by total winnings (in dollars)
- Took second place with a CFR bot. We just barely lost to...
- ...the other U of A bot

	Hyperborean07OL-2	Hyperborean07OL	GS3	lanBot	Quick	Gomel-2	PokeMinn	Sequel	Sequel-2	LeRenard	DumboOL-2	Average
Hyperborean07OL-2		-37	-27	-37	138	155	172	166	178	170	259	114
Hyperborean07OL	37		21	27	116	108	141	153	175	132	207	112
GS3	27	-21		6	73	112	150	140	148	142	199	98
lanBot	37	-27	-6		99	85	130	131	140	130	157	87
Quick	-138	-116	-73	-99		19	-40	125	121	15	129	-6
Gomel-2	-155	-108	-112	-85	-19		-144	135	150	136	123	-8
PokeMinn	-172	-141	-150	-130	40	144		-33	-22	127	-15	-35
Sequel	-166	-153	-140	-131	-125	-135	33		19	92	-1	-71
Sequel-2	-178	-175	-148	-140	-121	-150	22	-19		74	17	-82
LeRenard	-170	-132	-142	-130	-15	-136	-127	-92	-74		21	-100
DumboOL-2	-259	-207	-199	-157	-129	-123	15	1	-17	-21		-110

- Winner determined by total winnings (in dollars)
- Took second place with a CFR bot. We just barely lost to...
- ...the other U of A bot
- (Darse Billings and Morgan Kan)

	Hyperborean07OL-2	Hyperborean07OL	GS3	lanBot	Quick	Gomel-2	PokeMinn	Sequel	Sequel-2	LeRenard	DumboOL-2	Average
Hyperborean07OL-2		-37	-27	-37	138	155	172	166	178	170	259	114
Hyperborean07OL	37		21	27	116	108	141	153	175	132	207	112
GS3	27	-21		6	73	112	150	140	148	142	199	98
lanBot	37	-27	-6		99	85	130	131	140	130	157	87
Quick	-138	-116	-73	-99		19	-40	125	121	15	129	-6
Gomel-2	-155	-108	-112	-85	-19		-144	135	150	136	123	-8
PokeMinn	-172	-141	-150	-130	40	144		-33	-22	127	-15	-35
Sequel	-166	-153	-140	-131	-125	-135	33		19	92	-1	-71
Sequel-2	-178	-175	-148	-140	-121	-150	22	-19		74	17	-82
LeRenard	-170	-132	-142	-130	-15	-136	-127	-92	-74		21	-100
DumboOL-2	-259	-207	-199	-157	-129	-123	15	1	-17	-21		-110

AAAI: Heads-Up No-Limit

• No-Limit is what you see on TV - bets can be any size

	BluffBot20	GS3	Hyperborean07	SlideRule	Gomel	Gomel-2	Milano	Manitoba	PokeMinn	Manitoba-2	Average
BluffBot20		267	380	576	2093	2885	3437	475	1848	2471	1603
GS3	-267		113	503	3161	124	1875	4204	-42055	5016	-3036
Hyperborean07	-380	-113		-48	6657	5455	6795	8697	12051	22116	6803
SlideRule	-576	-503	48		11596	9730	10337	10387	15637	10791	7494
Gomel	-2093	-3161	-6657	-11596		3184	8372	11450	62389	52325	12690
Gomel-2	-2885	-124	-5455	-9730	-3184		15078	11907	58985	40256	11650
Milano	-3437	-1875	-6795	-10337	-8372	-15078		5741	12719	27040	-44
Manitoba	-475	-4204	-8697	-10387	-11450	-11907	-5741		18817	50677	1848
PokeMinn	-1848	42055	-14051	-15637	-62389	-58985	-12719	-18817		34299	-12010
Manitoba-2	-2471	-5016	-22116	-10791	-52325	-40256	-27040	-50677	-34299		-27221

AAAI: Heads-Up No-Limit

- No-Limit is what you see on TV bets can be any size
- This was our first time making a No-Limit bot

	BluffBot20	GS3	Hyperborean07	SlideRule	Gomel	Gomel-2	Milano	Manitoba	PokeMinn	Manitoba-2	Average
BluffBot20		267	380	576	2093	2885	3437	475	1848	2471	1603
GS3	-267		113	503	3161	124	1875	4204	-42055	5016	-3036
Hyperborean07	-380	-113		-48	6657	5455	6795	8697	12051	22116	6803
SlideRule	-576	-503	48		11596	9730	10337	10387	15637	10791	7494
Gomel	-2093	-3161	-6657	-11596		3184	8372	11450	62389	52325	12690
Gomel-2	-2885	-124	-5455	-9730	-3184		15078	11907	58985	40256	11650
Milano	-3437	-1875	-6795	-10337	-8372	-15078		5741	12719	27040	-44
Manitoba	-475	-4204	-8697	-10387	-11450	-11907	-5741		18817	50677	1848
PokeMinn	-1848	42055	-14051	-15637	-62389	-58985	-12719	-18817		34299	-12010
Manitoba-2	-2471	-5016	-22116	-10791	-52325	-40256	-27040	-50677	-34299		-27221

AAAI: Heads-Up No-Limit

- No-Limit is what you see on TV bets can be any size
- This was our first time making a No-Limit bot
- Took third place, using a CFR bot with abstracted betting

	BluffBot20	GS3	Hyperborean07	SlideRule	Gomel	Gomel-2	Milano	Manitoba	PokeMinn	Manitoba-2	Average
BluffBot20		267	380	576	2093	2885	3437	475	1848	2471	1603
GS3	-267		113	503	3161	124	1875	4204	-42055	5016	-3036
Hyperborean07	-380	-113		-48	6657	5455	6795	8697	12051	22116	6803
SlideRule	-576	-503	48		11596	9730	10337	10387	15637	10791	7494
Gomel	-2093	-3161	-6657	-11596		3184	8372	11450	62389	52325	12690
Gomel-2	-2885	-124	-5455	-9730	-3184		15078	11907	58985	40256	11650
Milano	-3437	-1875	-6795	-10337	-8372	-15078		5741	12719	27040	-44
Manitoba	-475	-4204	-8697	-10387	-11450	-11907	-5741		18817	50677	1848
PokeMinn	-1848	42055	-14051	-15637	-62389	-58985	-12719	-18817		34299	-12010
Manitoba-2	-2471	-5016	-22116	-10791	-52325	-40256	-27040	-50677	-34299		-27221

- No-Limit is what you see on TV bets can be any size
- This was our first time making a No-Limit bot
- Took third place, using a CFR bot with abstracted betting
- We hope to do better next year! Lots of exciting work to be done here.

	BluffBot20	GS3	Hyperborean07	SlideRule	Gomel	Gomel-2	Milano	Manitoba	PokeMinn	Manitoba-2	Average
BluffBot20		267	380	576	2093	2885	3437	475	1848	2471	1603
GS3	-267		113	503	3161	124	1875	4204	-42055	5016	-3036
Hyperborean07	-380	-113		-48	6657	5455	6795	8697	12051	22116	6803
SlideRule	-576	-503	48		11596	9730	10337	10387	15637	10791	7494
Gomel	-2093	-3161	-6657	-11596		3184	8372	11450	62389	52325	12690
Gomel-2	-2885	-124	-5455	-9730	-3184		15078	11907	58985	40256	11650
Milano	-3437	-1875	-6795	-10337	-8372	-15078		5741	12719	27040	-44
Manitoba	-475	-4204	-8697	-10387	-11450	-11907	-5741		18817	50677	1848
PokeMinn	-1848	42055	-14051	-15637	-62389	-58985	-12719	-18817		34299	-12010
Manitoba-2	-2471	-5016	-22116	-10791	-52325	-40256	-27040	-50677	-34299		-27221

• Beating human experts is a big milestone

- Beating human experts is a big milestone
- Tough to get statistical significance against humans

- Beating human experts is a big milestone
- Tough to get statistical significance against humans
- So we played two at once with the same cards

- Beating human experts is a big milestone
- Tough to get statistical significance against humans
- So we played two at once with the same cards
- Four matches of 500 hands each

- Beating human experts is a big milestone
- Tough to get statistical significance against humans
- So we played two at once with the same cards
- Four matches of 500 hands each
- Have to be ahead by 25 small bets to win a match

Phil Laak

- Background: Mechanical Engineer
- Started gambling in competitive backgammon
- Competes in the world's biggest poker tournaments

Mike Johanson ()

Robust Strategies and Counter-Strategies

November 20, 2012 55 / 65

Ali Eslami

- Background: Computer consultant
- Started out by playing...
- Plays in \$1000-\$2000 Limit games

Ali Eslami

- Background: Computer consultant
- Started out by playing... Magic: The Gathering
- Plays in \$1000-\$2000 Limit games

Ali Eslami

- Background: Computer consultant
- Started out by playing... Magic: The Gathering
- Plays in \$1000-\$2000 Limit games
- (This is a lot of money!)

- We had 10 different bots to use:
 - Several Counterfactual Regret Minimization approximate Nash equilibria
 - Flavours of Restricted Nash Response counter-strategies

- We had 10 different bots to use:
 - Several Counterfactual Regret Minimization approximate Nash equilibria
 - Flavours of Restricted Nash Response counter-strategies
- We wanted a baseline to compare future bots against
- Bot used: Mr. Pink, our finest abstraction CFR approximate Nash
 equilibrium
 Mike Johanson ()
 Robust Strategies and Counter-Strategies
 November 20, 2012
 57 / 65

On Stage: Ali Eslami

Hotel: Phil Laak

November 20, 2012

On Stage: Ali Eslami

Hotel: Phil Laak

- Ali: \$395
- Phil: -\$465
- Polaris ends ahead by \$70
- Result: Tie

- Score so far: 1 Tie
- The careful choice (Mr. Pink) did OK, so lets try something crazy!

- Score so far: 1 Tie
- The careful choice (Mr. Pink) did OK, so lets try something crazy!
- Bot used: Mr. Orange / Crazy 8s
- It's a CFR approximate Nash equilibrium in a broken game that encourages aggression

Hotel: Ali Eslami

On Stage: Phil Laak

Hotel: Ali Eslami

On Stage: Phil Laak

- Ali:-\$2495
- Phil: \$1570
- Polaris ends ahead by \$925
- Result: Win

- Score so far: 1 Win, 1 Tie
- Which of our 10 bots to use this time?

- Score so far: 1 Win, 1 Tie
- Which of our 10 bots to use this time?
- We pulled an all nighter and ran importance sampling on the last 1000 hands
- Predicted the best 3 bots to use against each player

- Score so far: 1 Win, 1 Tie
- Which of our 10 bots to use this time?
- We pulled an all nighter and ran importance sampling on the last 1000 hands
- Predicted the best 3 bots to use against each player
- Used a coach that chose between these 3 during the match

Mike Johanson ()

Robust Strategies and Counter-Strategies

November 20, 2012 61 / 65

Hotel: Ali Eslami

On Stage: Phil Laak

Hotel: Ali Eslami

On Stage: Phil Laak

- Ali:-\$635
- Phil: \$1455
- Polaris ends behind by \$820
- Result: Loss

- Score so far: 1 Win, 1 Tie, 1 Loss
- Decided to play it safe and go for a tie

- Score so far: 1 Win, 1 Tie, 1 Loss
- Decided to play it safe and go for a tie
- Bot used: Mr. Pink, the approximate Nash equilibrium from the first match
Day 2, Session 2

Onstage: Ali Eslami

Hotel: Phil Laak

Day 2, Session 2

Onstage: Ali Eslami

Hotel: Phil Laak

- Ali: \$460
- Phil: \$110
- Polaris ends behind by \$570
- Result: Loss

 Very close game — we lost by 0.01 small bets/game, less than the tie margin

65 / 65

- Very close game we lost by 0.01 small bets/game, less than the tie margin
- Ali: "This was not a win for us...I played the best heads-up poker I've ever played...we just barely won"

- Very close game we lost by 0.01 small bets/game, less than the tie margin
- Ali: "This was not a win for us...I played the best heads-up poker I've ever played...we just barely won"
- Post-game analysis (DIVAT) suggests that we outplayed them

- Very close game we lost by 0.01 small bets/game, less than the tie margin
- Ali: "This was not a win for us...I played the best heads-up poker I've ever played...we just barely won"
- Post-game analysis (DIVAT) suggests that we outplayed them
- We'd like to do another match next year

- Very close game we lost by 0.01 small bets/game, less than the tie margin
- Ali: "This was not a win for us...I played the best heads-up poker I've ever played...we just barely won"
- Post-game analysis (DIVAT) suggests that we outplayed them
- We'd like to do another match next year
- There's lots of exciting work to do here, too!