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Abstract

Poker is a challenging game with strong human and computer players. In this thesis, we will explore

four approaches towards creating a computer program capable of challenging these poker experts.

The first approach is to approximate a Nash equilibrium strategy which is robust against any oppo-

nent. The second approach is to find an exploitive counter-strategy to an opponent. We will show

that these counter-strategies are brittle: they can lose to arbitrary other opponents. The third ap-

proach is a compromise of the first two, to find robust counter-strategies. The four approach is to

combine several of these agents into a team, and learn during a game which to use. As proof of the

value of these techniques, we have used the resulting poker programs to win an event in the 2007

AAAI Computer Poker Competition and play competitively against two human poker professionals

in the First Man-Machine Poker Championship.
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Chapter 1

Introduction

1.1 Playing Games

The use of games as a testbed for artificial intelligence predates the existence of the first modern

computers. In 1952, Alan Turing had written an algorithm for playing chess, but did not have

access to a computer on which to run it. Instead, he performed the necessary computations by hand

on paper, acting as an aptly named Turing machine. Although his algorithm lost its one recorded

match [12, p. 440], the experiment was a precursor to what has become a successful line of research.

The artificial intelligence techniques that researchers have developed to play games such as chess

have found many applications in the study of artificial intelligence, and in computing science in

general.

Games have several compelling features that make them well-suited to be a benchmark for

progress in artificial intelligence:

• Finite game state and action space. Tasks like the games of chess and checkers have a large

but finite number of possible states, defined by the permutations of pieces on the board, and

the players must choose between a limited number of actions. Tasks with a limited number of

states and possible actions are conceptually simpler, allowing researchers and programmers

to focus more on the artificial intelligence task and less on the intricacies of the domain.

• Clear measure of success. A game of chess can only end in three ways: a win, a loss, or a

draw. The players may additionally consider degrees of success, such as winning the game as

fast as possible, or with most of one’s pieces intact. Even these alternate goals are quantifiable,

and it is still clear that the program either works as intended (by winning) or not (by losing).

• Existence of experts to compare against. For tasks where success can be measured, two

players can attempt the same task or compete against each other. Over repeated trials, we

can determine if one player is better than the other. Through comparisons and competitions

between different techniques for solving an artificial intelligence task, we can determine the

circumstances in which one technique is more effective than the other. Furthermore, for games
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such as chess, checkers, bridge or poker, there is a set of human enthusiasts that possess a

wide range of ability. By comparing our artificially intelligent programs against humans, and

human experts in particular, we can measure the progress of artificial intelligence.

In this thesis, we will continue this line of research into games by considering the challenging

and popular game of Texas Hold’em poker. The main contributions of this work are three new

methods for creating artificially intelligent programs that play games, and the demonstration of an

established technique for combining those programs into a team. While these techniques can be

applied towards a wide variety of games, we will focus on using Texas Hold’em as a benchmark.

The agents created using these methods have competed in and won an international competition for

computer poker players, and have been shown to be competitive with two of the world’s best human

players during the First Man-Machine Poker Championship. By playing competitively against the

world’s best poker players — both computer and human — we have demonstrated the effectiveness

of our techniques.

In Section 1.2, we will describe the history of game playing programs and identify the features

that are used to partition games into different categories. In Section 1.3, we will explain the me-

chanics of Texas Hold’em, and describe the qualities of this game (as compared to other games) that

make it an interesting domain for artificial intelligence research. In Section 1.4 we will outline the

contributions of this thesis in detail.

1.2 Beating humans at their own games

Since Turing’s chess game in 1952, computer programmers have produced several examples of

game playing programs that have approached and surpassed the best human players. A few of the

prominent successes are:

• Checkers. Chinook is a checkers playing program developed by a team at the University of

Alberta, led by Jonathan Schaeffer. In 1994, Chinook earned the right to challenge Marion

Tinsley for the World Championship title. Chinook won the title after Dr. Tinsley forfeited

the match due to health concerns. Chinook has since defended the title against other human

masters [26].

• Chess. Deep Blue is a chess playing program developed at IBM, by a team led by Feng-hsiung

Hsu and Murray Campbell. In 1997, Deep Blue played against chess world champion Garry

Kasparov in an exhibition match, and won the match 3.5-2.5 [13].

• Othello. Logistello is an othello program developed by Michael Buro. In 1997, Logistello

played against othello world champion Takeshi Murakami in an exhibition match, and won

the match 6-0 [9].
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Several other games also have strong computer agents that are competitive with or surpass the

best human players. Scrabble, backgammon, and awari are examples of such games. Some of these

games have common attributes, such as checkers, chess and othello. The players alternate turns

taking actions with deterministic consequences, and the entire state of the game is visible to both

players at all times. In games such as Scrabble and poker, some information is hidden from one or

more of the players. In games such as backgammon, poker and blackjack, there is an element of

chance that makes it impossible to determine precisely what will happen in the game’s future. We

can classify games based on these features:

By the term perfect information game, we refer to games where all players can determine the

exact state of the game. In games like chess and checkers, this is done by looking at the board,

where the pieces determine the game state. In contrast, games like poker and Scrabble are called

imperfect information games, as there is some information known to some players but not others.

In poker, each player has cards that only they can see. In Scrabble, each player can view their own

tiles, but not that of their opponent.

By the term deterministic game, we refer to games where each action has a fixed, consistent

outcome. For example, in chess, choosing to move a pawn forward one square always results in the

same result — the pawn advances one square. In these games, it is possible to explore all possible

lines of play, and choose actions that have guaranteed outcomes. Games like Monopoly or Risk

are examples of stochastic games, where either the player’s actions or the “chance” player affects

the game in unpredictable ways. In Risk, the action to attack another player has several possible

outcomes determined by random dice rolls. In Monopoly, the player is forced to roll the dice,

determining the distance that their piece moves. Their actions (to buy or not buy a property) have

deterministic outcomes, but the outcome of the game is affected by random chance. In such games,

we consider a third player — the “chance” player — to take actions according to some distribution.

In Monopoly, the chance player’s actions determine the distance that the player’s piece will move;

in Risk, the chance player’s actions determine if an attack is successful or not. These stochastic

elements mean that the agents cannot be sure of the outcome of choosing certain actions.

Many of the computer programs strong enough to challenge human experts play games that are

deterministic and have perfect information. Chess, checkers, and othello are all examples of such

games. In these games, the well-known technique of alpha-beta search can be used to explore deep

into the game tree, in order to choose actions that a worst-case opponent cannot do well against.

Although games with these attributes may have differences — some games may be longer, or have

a larger branching factor — there is at least an intuition that the techniques that have worked well

in these games (alpha-beta search, opening books, endgame databases, and so on) should also apply

to other deterministic, perfect information games. Therefore, to pursue new avenues for research,

computing scientists have examined other types of games. We present two well known examples:

• Maven is a world-champion level Scrabble player, written by Brian Sheppard [28]. Scrabble

3



is an imperfect information game, in that the players cannot see the tiles that the other player

holds. It also has stochastic elements, in that the players draw random tiles to refill their rack

after placing a word. Maven uses selective sampling roll-outs to choose its actions. To choose

its actions, the program samples many likely opponent racks of tiles, and simulates the value

of its actions given those racks.

• TD-Gammon is a Backgammon player of comparable strength to the best human players,

written by Gerry Tesauro [30]. Backgammon is a stochastic game, where dice rolls determine

the available options for moving pieces around the board. Reinforcement learning is used to

train the program.

In the next section, we will present the game of Texas Hold’em poker, which has a combination

of features that are not well represented by the games we have discussed.

1.3 Texas Hold’em Poker

In 1997, the Games Research Group at the University of Alberta formed the Computer Poker Re-

search Group (CPRG) to focus on the game of poker as a domain for new research. Poker is a card

game for two or more players that has several interesting features that are not well addressed by the

traditional approaches used in perfect information, deterministic games:

• Imperfect information. Each player holds cards that only they can observe. There are a large

number of possible opponent hands, which can subtly change in strength depending on cards

revealed throughout the game. Part of the challenge of poker is the importance of inferring

what cards the opponent might be holding, given their actions. It is equally important to

choose deceptive actions to avoid revealing the nature of one’s own cards.

• Stochastic outcomes. The cards dealt to the players are selected at random, and the strength

of each player’s hand may vary greatly on each round. A successful player must be able

to choose actions while considering the risks involved. With a strong hand, actions may

be chosen so as to scare other players into exiting the game, to avoid the possibility of an

unlucky card making other player’s hand stronger. Alternatively, a strong hand can be played

deceptively to encourage other players to stay in the hand, and thus increase the reward at the

end of the game. A hand might be weak in the current round, but have some probability of

becoming the strongest hand if a particular card is dealt. A successful player must be able to

recognize these situations and play accordingly.

• Exploitation is important. In many of the games mentioned previously, the players are trying

to win, and not necessarily to win by a large margin. In poker, the players are trying to win

by as large a margin as possible. While there is still merit in designing a program that cannot

4



be beaten by its worst-case opponent, an excellent poker player will adapt to their opponents’

strategy to exploit them.

• Partially observable information. The hidden information is not always revealed at the end

of the game. This means that the player must not only manage their risk during the game, but

that they cannot always confirm that their actions were correct after the game. This makes the

opponent modeling task difficult, as players may sometimes choose to play suboptimally to

reveal the opponents’ hidden cards, in order to improve their opponent model.

We will now provide an introduction to the game of poker and the rules of Texas Hold’em, the

particular poker variant that we are interested in. Afterwards, with a basic understanding of the

mechanics of the game, we will revisit these features in more detail.

1.3.1 Poker and Heads-Up Texas Hold’em

Poker is a class of games; there are over 100 variants of poker, most of which have similar rules

and themes. Over the last few years, poker and its variants have enjoyed a rush of popularity. This

is partially due to the new availability of online casinos that allow players to play poker online,

instead of in casinos or informal cash games. Poker tournaments and poker-oriented shows have

also become popular on TV, introducing novices to a game that they may not have encountered

before.

Poker involves two or more players who play a series of short games against each other. Each

player is dealt cards from a standard playing card deck, with which they form a five-card hand. Each

possible hand is associated with a category that determines its strength as compared to other hands.

Examples of these categories include “One Pair” (having two cards of the same rank), “Flush” (five

cards of the same suit), or “Full House” (two cards with the same rank, and three cards of a different

rank). The players place wagers that their hand will be the strongest at the end of the game. Each

wager is called a bet, and the sum of the wagers is called the pot. Instead of betting, players can

leave the game, surrendering any chance of winning the pot. At the end of each game, the remaining

player with the strongest hand wins the pot, and another game begins. The goal is to win as much

money as possible over the series of games. This emphasizes one of the features of poker that we

discussed in Section 1.2: it is important to win as much as possible from each opponent. A player

that wins a little against every opponent can lose to a player that loses a little to half of the players,

and wins a lot from the remaining players. In fact, this was the result of one of the events in the

2007 AAAI Computer Poker Competition, which will be discussed in Chapter 7.

In particular, we are interested in the variant of poker known as Texas Hold’em. Texas Hold’em

is considered to be the most strategic variant of poker, in that it requires more skill and is less

influenced by luck than other poker variants. Texas Hold’em is a game for two to ten players that

advances through four rounds, which we will briefly describe here. A detailed introduction to the
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rules is available online [31].

During each round, the players will participate in a round of betting, in which they will alternate

taking one of the following actions:

• Fold. The player exits the game, relinquishing any chance of winning the pot.

• Call. The player increases the size of their wager to match the highest wager of the other

players, and places this amount into the pot. If no wagers have been placed in the current

round, this action is called a “check”.

• Bet. The player places a new wager in the pot, which other players must call if they wish to

continue playing. If another player has placed a wager that has not yet been called, then the

player matches that wager before placing their own. In this case, the action is called a “raise”.

When all of the players have acted and have either folded or called the wagers, the game pro-

gresses to the next round. If at any time only one player remains in the game (that is, if the other

players have folded), then that player wins the pot without revealing their cards, and the game is

over.

Each game progresses through four rounds, called the Preflop, Flop, Turn and River, and ends

with a Showdown:

• Preflop. One player is designated the dealer. The two players to the left of the dealer are

called the Small Blind and the Big Blind, and are forced to make a bet (also known as an

ante). The dealer then deals two private cards (also known as hole cards) to each player,

which only they can see or use. Then, starting with the player to the left of the Big Blind, the

players begin a round of betting.

• Flop. The dealer deals three public cards to the table. These cards are also called board

cards or community cards, and all of the players may see and use these cards to form their

poker hand. After the cards are dealt, the player to the left of the dealer begins another round

of betting.

• Turn. The dealer deals one additional public card to the table, and the player to the left of the

dealer begins another round of betting.

• River. The dealer deals one final public card to the table, and the player to the left of the

dealer begins the final round of betting.

• Showdown. All players still in the game reveal their cards. The player with the strongest

hand wins the pot, and a new game begins. In the case of a tie, the pot is divided between the

players with the strongest hands.

6



1.3.2 Variants of Texas Hold’em Poker

Texas Hold’em has several variants that determine the size of the wagers that the players are allowed

to make; of these variants, we will describe two. In the Limit variant, a fixed bet size is chosen before

the start of the game, such as $10/$20. This means that during the Preflop and Flop rounds, all bets

and raises are $10; in the Turn and River rounds, all bets and raises are $20. These values are called

the Small Bet and the Big Bet. At the start of the game, the Small Blind and Big Blind are forced to

place bets equal to one half of a Small Bet and a Small Bet, respectively.

In the No-Limit variant, the size of the Small Blind and Big Blind are set before the start of the

first game. When given a chance to act, each player may bet any amount of money equal or greater

than the size of the previous bet, up to the total amount of money they have available. When a player

bets all of their money, it is called going all-in.

If more than two players are playing, it is called a Ring game. If the game is being played by

only two players, it is called a Heads-Up game. A common convention in Heads-Up games is to

reverse the betting order in the Preflop round, such that the dealer places the small blind and acts

first. This is done to reduce the advantage of being second to act.

In this thesis, we will only consider Heads-Up Limit Texas Hold’em. The techniques described

here have also been used to produce Heads-Up No-Limit poker agents, which were competitive in

the 2007 AAAI Computer Poker Competition. However, there are currently many more programs

available that play Limit than No-Limit, and so we will focus on the Limit variant where we have a

wide variety of established players for comparison.

1.3.3 Poker Terminology

Several other terms in the poker lexicon should be defined before continuing. A more comprehensive

vocabulary can be found in [4, Appendix A].

• Bluff. A bluff is a bet that is made with a weak hand, to convince the opponent that the player

holds strong cards. This can result in an immediate win (if the opponent folds as as result),

and also serves to obfuscate future bets with strong hands, as the opponent may believe the

player is attempting to bluff again.

• Semi-bluff. A semi-bluff is a bluff that is made with an inferior hand that has the potential to

improve to a game-winning hand, if certain board cards are revealed.

• Trapping. A trapping action is when a player with a strong hand passes up an opportunity to

bet, to convince the opponent that the player’s hand is weak. Two examples of trapping are

the check-raise, where a player checks with the intent of raising if the opponent responds by

betting, and the slow-play, where a player checks or calls with the intent of raising in a future

round.
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• Value bet. A bet made to increase the value of a pot that the player expects to win with their

current hand.

1.3.4 Poker Features

In Section 1.3, we mentioned four features of Texas Hold’em poker that made it an excellent domain

for artificial intelligence research. Once again, these features were:

• Imperfect information. Players must be able to reason about the strength of the hidden cards

their opponents hold, and choose actions that are profitable without revealing information

about their own hand.

• Stochastic outcomes. Players must be able to choose profitable actions in an uncertain en-

vironment, where they can quickly change from a winning position to a losing one and vice

versa.

• Exploitation is important. Players must be able to model their opponent and adapt their play

accordingly, in order to maximize their long-term winnings.

• Partially observable information. Players must be able to construct opponent models even

though there is some information that they will never have access to.

For many poker experts, poker has become a lucrative career. Poker professionals, unlike chess

or checkers professionals, can win large cash prizes by playing in tournaments. For example, in

the 2005 World Series of Poker, $52,818,610 in prize money was won by players, with $7.5 million

going to the first place finisher of the main event [32]. With such a large monetary incentive, one can

expect the best human experts to take the game very seriously and to display a high level of skill.

Skilled human opposition at a range of skill levels is readily available: from within the CPRG,

online through “play money” webpages, and recently, from human experts. In July of 2007, the

University of Alberta Computer Poker Research Group hosted the First Man-Machine Poker Cham-

pionship, held at the AAAI conference in Vancouver. Over two days, ten poker agents, nine of

which were created by the techniques described in this thesis, were used to compete in four dupli-

cate matches against two world class human professional poker players — Phil Laak and Ali Eslami.

The results of this match will be discussed in Chapter 7.

Therefore, to the above list of four important features of poker, we add one more:

• Availability of many players of varying skill levels — poker’s current popularity means

that there are players at all skill levels from beginners to world champions willing to compete

against artificially intelligent agents.

Some of these features occur in other games. However, games that include even a few of these

features tend to not be as well studied as deterministic, perfect information games such as chess,
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checkers, hex, awari, go, othello, amazons, Chinese chess, shogi, sokoban, lines of action, domi-

neering, and many others. Games with stochastic elements and imperfect information represent a

promising research area that has not received as much attention as it should.

When we use games as a research domain, we discover techniques that have applications beyond

the games domain. To name one example, the research towards heuristic search in games at the Uni-

versity of Alberta has been applied to civil engineering tasks such as optimally placing storm drains

and sewers in cities. Dr. Jonathan Schaeffer, however, claims that the advances that come from

research towards stochastic, imperfect information games such as poker will have much broader

applicability to real-life problems than the advances that have come from deterministic, perfect in-

formation games [29, 19]. There is a strong intuition behind this: the real world is unpredictable and

partially observable, and real-world tasks often involve working with or against other agents whose

actions affect your own.

1.4 Contributions of This Thesis

Having established the necessary background information and motivated the topic, we can now

present in detail our contributions. In this thesis, we will discuss three new techniques that can

be used to produce strategies for playing any stochastic, hidden information game. We will also

demonstrate the use of an established experts algorithm technique for combining these strategies

into a team.

We will begin in Chapter 2 by describing the theoretical foundation on which this work relies.

We will also describe the methods by which we evaluate our poker programs, and give examples of

several recent successful poker programs.

Each of the following techniques will then be discussed in its own chapter:

• Counterfactual Regret Minimization (CFR). There are well-known techniques for finding

Nash Equilibria in small abstracted versions of Texas Hold’em. In Chapter 3, we will show

a new technique for quickly finding Nash Equilibria in much larger abstractions than were

previously possible. This is possible because this new approach has much smaller memory

requirements than established approaches: the new technique’s memory requirements scale

with the number of information sets, instead of the number of game states. As they play close

to a Nash equilibria, the CFR agents have theoretical bounds on their maximum exploitability.

We will show that the agents produced by this technique are stronger than all of our benchmark

agents.

• Frequentist Best Response (FBR). Given an arbitrary opponent, how can we develop an

effective counter-strategy that can defeat it? In Chapter 4, we will define a new technique for

producing these counter-strategies, use it to model a wide range of opponents, and show that

it performs better than previously known techniques.
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• Restricted Nash Response. The agents produced by the Frequentist Best Response technique

are brittle — they perform well against their intended opponents, but are very exploitable and

can perform very poorly against arbitrary opponents. The agents produced by the Counter-

factual Regret Minimization technique are robust — their worst-case opponent cannot exploit

them, but they are not able to fully exploit weak opponents. The Restricted Nash Response

technique is a compromise — it produces agents that are robust against arbitrary opponents,

yet are also capable of exploiting a subset of possible opponents. Like the CFR agents, the

technique provides a theoretical bound on their maximum exploitability. In Chapter 5, we

will explain how this technique works, and show that the programs produced by this tech-

nique perform well against a wide variety of benchmark programs, losing only slightly to the

new CFR agents while defeating other opponents by higher margins.

• Teams of Agents. The three new techniques described previously all produce independent

poker strategies with different merits and weaknesses. Against an arbitrary opponent, it may

not initially be clear which type of agent to use against it. Instead of just using one agent,

we will consider a set of agents to be a team, and use a “coach” that dynamically chooses

which agent to use. In Chapter 6, we show that by using established techniques from the

experts paradigm that we can use several Poker agents and learn online which one is most

effective against an opponent. This produces one poker program that is stronger than any of

its individual components.

The poker programs produced as a result of these new techniques have recently competed in

two significant competitions. In Chapter 7, we will present the results of the 2007 AAAI Computer

Poker Competition and the First Man-Machine Poker Championship.

Finally, we will summarize the contributions of this thesis in Chapter 8, the conclusion, and will

describe the promising new directions for this research that have been revealed in the wake of the

two 2007 competitions.

1.5 Author’s Contributions

The techniques to be presented in Chapter 3, Chapter 5 and Chapter 6 were developed in collab-

oration with Martin Zinkevich and Michael Bowling. In particular, the original idea, theoretical

foundation and a prototype implementation of the Counterfactual Regret Minimization approach are

the contributions of Martin Zinkevich. The author’s contribution was practical implementation and

optimization of a program that uses this technique. The author then used the program to collect

the results presented in this thesis and to produce the competitive poker strategies which were en-

tered into the competitions described in Chapter 7. In these chapters, we will take care to state the

portions of the work that are the author’s contribution, and the portions that were contributed by

others.
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Chapter 2

Background and
Related Work

There is a long history of research into creating agents for playing zero-sum, imperfect information

games such as poker. In this section, we will review some of the recent work upon which this thesis

depends.

First, we will present additional background related to creating and evaluating computer poker

agents. In Section 2.1, we will describe several different types of strategies that could be used in

poker. In Section 2.2, we will explain the methods by which we will evaluate the poker programs

that we create. In Section 2.3, we will describe a variety of benchmark programs against which we

will compare our new poker programs. In Section 2.5, we will explain how Texas Hold’em poker

(a game with 1018 states), can be abstracted to a manageable size without affecting the strategic

elements of the game.

Next, we will begin laying a foundation for our descriptions of past approaches and our own new

contributions. In Section 2.4, we will define extensive form games, sequence form, and the variables

and terminology that will be used throughout this thesis.

Finally, in Section 2.6, we will review a selection of past approaches to creating poker agents.

In Section 2.6.1, we will discuss the simulation-based approaches that the CPRG used for its first

poker agents. In Section 2.6.2, we will review the most successful approaches to date: strategies that

approximate a Nash equilibrium, resulting in very robust players. In Section 2.6.3, we will explain

best response strategies. In Section 2.6.4, we will consider adaptive players that change their play

to defeat their opponent. Finally, in Section 2.7, we will review one known approach for combining

poker strategies into a team, and a “coach” agent that chooses which strategy to use from game to

game.
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2.1 Types of poker strategies

Before describing some of the poker programs that have already been developed, it is useful to con-

sider the different types of strategies that a player could use when playing the game. In Section 1.3.4,

we mentioned that one of the features of poker is that exploitation is important: the goal is to win

as much money as possible from each opponent. This means that there is not a “correct way” to

play poker, like there is in games that have recently been solved such as awari [23] or checkers [25].

Instead, the correct strategy to use should ideally depend on the opponent that is being faced.

Against a weak or known opponent, this may mean using a strategy designed to exploit their

faults. Through examining histories of past games or through online learning, one can build a model

of the opponent, and act in such a way as to maximally exploit the model. If the model is very

accurate, then this may have a high win rate. If the model is inaccurate, however, it can lose badly.

Against an unknown or stronger opponent, we may want to adopt a strategy that is very difficult

to exploit. The standard way of thinking about such a strategy, in any game, is the concept of a Nash

equilibrium. A Nash equilibrium is a strategy for each player of the game, with the property that no

single player can do better by changing to a different strategy. There can be several different (and

possibly infinitely many) equilibria for any given game, but if the game is two-player and zero-sum,

every Nash equilibrium provides the same payoffs to the players. In a repeated game where the

players change positions, such as heads-up poker, this is a very useful property — if both players

are playing an equilibrium strategy, the expected score for both players will be zero. If one player

plays the equilibrium strategy, since their opponent cannot do better by playing a strategy other than

the equilibrium, they can expect to do no worse than tie the game. In poker, using such a strategy

allows us to defend against any opponent, or allows us to learn an opponent’s tendencies safely for

several hands before attempting to exploit them.

When trying to find a Nash equilibrium in a complex game, we can rarely arrive at the precise

equilibrium. Instead, we approximate the Nash equilibrium with an ε-Nash equilibrium strategy,

where ε is a measure of how far from the equilibrium the strategy is. Since a Nash equilibrium

strategy should expect to get a value of no less than 0 against any opponent, ε is the value of the

best response to the strategy. Other ways to say this are that that the strategy is ε suboptimal or

exploitable.

A common theme we will explore when considering poker strategies is the tradeoff between

exploiting an opponent and one’s own capacity to be exploited. If we use a strategy that is specifi-

cally designed to beat one opponent, we are exploiting them but are also opening ourselves up to be

exploited by a different strategy. If we choose to minimize our own exploitability by playing very

close to an equilibrium, then we have to sacrifice our ability to exploit an opponent. It would be

very valuable to have strategies along this line, and not just at these two extremes. Furthermore, we

would like to obtain more than a linear tradeoff when we do this: we want to get more than we give

up.
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Instead of just having one well-designed strategy, we would also like to have a variety of strate-

gies to choose from. For example, we may want to consider a set of strategies to be a team, from

which we will choose one strategy at a time to play the game. One approach could be to randomly

select strategies from a pool, and set a higher probability of choosing strategies that have historically

been successful. A more complicated approach may be to start with an equilibrium strategy until we

discover an opponent’s weakness, and then use the appropriate response to the weakness.

These types of strategies are presented as examples we are interested in for the purposes of this

thesis. In this thesis, we will describe methods for producing poker agents that play according to

each of these strategies — specific responses to opponents, careful equilibria, exploitative-but-robust

compromises, and teams of strategies with varying abilities.

2.2 Evaluating a poker program

When humans play Limit Hold’em, they often use the value of the Small Bet (or, equivalently, the

Big Blind) as their base unit of money. Since players can play at different speeds, or (if online) play

on several tables at the same time, they usually measure their success by the number of small bets

they win per game. Darse Billings, a poker expert and a researcher in the CPRG, claims that a good

player playing against weaker opponents can expect to make 0.05 small bets per game. This number

may seem surprisingly low to people new to the game, but at a $10/$20 table playing at 40 games

per hour, this translates to $20 per hour [4, p. 65].

Our poker agents play significantly faster than 40 games per hour. In fact, most of our poker

programs can play thousands of games per second, which allows us to play millions of games of

poker to compare the relative strength of our programs. Over millions of games, the variance is

reduced such that measuring our performance in small bets/game (sb/g) becomes unwieldy due to

the number of decimal points. Therefore, for computer competitions, we choose to measure our

performance in millibets/game (mb/g), where a millibet is 0.001 small bets.

Variance is a challenge in poker. On each game, the typical standard deviation of the score is

±6 sb/g (6000 mb/g) [7, p. 13]. If two closely matched poker players are playing a match and

one is 10 mb/g better than the other, it can take over one million hands to determine with 95%

confidence that the better player has won [15, p. 1]. One simple way to get an accurate result, then,

is simply to play several million hands of poker. This is possible if we are playing two programs

against each other, as 10 million games can be played in parallel in a matter of minutes. As human

players play comparatively slowly (40 games/hour) and their play degrades over time due to fatigue,

hunger, washroom needs and other typical human concerns, playing one million hands over 25,000

continuous hours is not an option. Instead, we use two other techniques to reduce the variance:

duplicate games and DIVAT analysis.
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2.2.1 Duplicate games

In bridge, a standard convention is to play duplicate games. At one table, teams A and B receive fixed

cards when they play against each other. At another table, teams C and D receive the same cards. If

teams A and C received the same cards, then they had the same opportunities. By comparing their

scores against each other, they can determine which team did better with the resources they had.

We have adopted this convention for poker. When we run a match between two programs (A

and B), we first play a series of games, with the cards being dealt according to a random number

generator given a certain seed. Then, we reset the programs so that they do not remember the

previous match, switch their starting positions, and replay the same number of games with the

same cards. We add each player’s performance in each position together, and compare the total

scores. Since each player has now received the same opportunities — the same lucky breaks and

the same unfortunate losses — the variance on each hand is much lower. In his PhD thesis, Billings

experimentally measured the standard deviation of a duplicate match at ±1.6 sb/g (1600 mb/g) [7,

p. 17]. When we run a match between two poker programs, we typically play 5 million hands of

duplicate poker. This means 5 million hands on either side of the cards, resulting in 10 million

hands total. This provides us with a 95% confidence interval for the mean of 2 mb/g, which is

usually enough for us to determine if one player is stronger than another.

Although duplicate poker does considerably reduce variance, it is still subject to luck. For ex-

ample, consider two players A and B that are playing the same hand against opponents. With a

weak Preflop hand, A might fold on the Preflop and take a small penalty. B might call, receive a

tremendously lucky set of cards on the Flop, and win a large pot as a result. In this example, a lucky

outcome has had a large effect on the duplicate score, and created variance. To combat this effect,

we simply play a large number of games when two computer players are competing.

Once again, playing against human opponents is more complicated than playing against com-

puter opponents. During the second half of a duplicate match, the competitors will have already

seen the opposite side of their cards, breaking the assumption that the two sets of games are inde-

pendent. Computer programs do not object to having their memories reset, but humans are not so

agreeable. Instead, we can perform the duplicate experiment by playing against two humans that

are working as a team. In one room, we play a match between program A and human B, and in a

separate room, human D will play against program C. The same cards will be dealt in each room,

with A and D receiving the same cards and playing in the same seat. Afterwards, the two humans

and two programs combine their scores, and we can determine which team performed better with

the same opportunities. This approach is most effective when both teammates are playing according

to a similar style. If they are radically different, such as if one player is very aggressive and the other

is very conservative, then more situations will arise where one team will win or lose both sides of

the same hand, resulting in less of a variance reduction.

This duplicate poker convention was used at the 2007 Man-Machine Poker Championship, where
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two human experts played 4 sets of 500 duplicate hands (4000 hands total) against the CPRG’s poker

agents. Over each 500 hand match, however, the variance was still quite high. While the duplicate

money total was used to declare a winner in each match, for our own purposes we used another tool,

called DIVAT analysis, to reduce more variance from the score.

2.2.2 DIVAT Analysis

DIVAT is a technique proposed by Billings and Kan [4, 15, 7], and analyzed further by Zinkevich

et al [33]. If poker is a game where skill plus luck equals money, then DIVAT is a technique for

subtracting the luck out of the equation. It is a tool that can be run after a match is complete, and

requires full information.

When used, the DIVAT program examines each hand and considers how a baseline strategy

would play both sides of the cards. This baseline can be any strategy, but in the CPRG’s imple-

mentation it is a bet-for-value strategy: it bets according to the strength of its cards, without trying

to bluff, slowplay, or do any other “tricky” actions. By comparing the player’s actions against the

baseline, we can identify situations where the the player took actions that resulted in more or less

money than the baseline would have made. If the player wins a large pot because of a lucky card

revealed on the river, then the baseline also wins this large pot, and the DIVAT program does not

reward the player for this win. However, if the player takes an action that the baseline would not

have, then the DIVAT program rewards or punishes the player.

These rewards and penalties are combined to form a score that gives a value to the player’s skill,

in small bets/game. The DIVAT program has been proven to be unbiased by Zinkevich et al [33],

meaning that the expected value of the player’s DIVAT score is equal to the expected value of the

money earned by the player. The standard deviation of the DIVAT score is dependent on the players

involved; Billings and Kan show examples of the standard deviation being reduced to as little as

±1.93 sb/g [7, p. 17]. The duplicate and DIVAT approaches can be combined to produce a duplicate

DIVAT metric, capable of reducing the standard deviation to ±1.18 sb/g [7, p. 18].

These techniques allow us to evaluate a poker agent in far fewer hands than would otherwise be

possible. Throughout this thesis, the resulting score of a match between two agents will be shown

in millibets per game (mb/g) and will be accompanied by the 95% confidence interval of the result.

All matches will be run in duplicate, to reduce variance. In the case of matches against human

opponents, DIVAT analysis will also be performed, to reduce the variance as much as possible.

2.3 Benchmark programs

To evaluate the poker agents produced by the techniques in this thesis, we will have them compete

against the following opponents:
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2.3.1 Best Responses

A best response to a program is an optimal strategy for playing against that program. Techniques

for approximating such an optimal strategy will be discussed later in Chapter 4; we will call these

approximations of optimal counter-strategies abstract game best responses. A match between a

program and its abstract game best response gives one indication of how much the program can be

beaten by. This is a worst-case analysis: an opponent without a perfect opponent model is unlikely

to win at the same rate as the abstract game best response strategy.

2.3.2 Poker Academy

Poker Academy is a poker training program produced by BioTools, Inc. Poker Academy includes

two strong poker programs, Sparbot and Vexbot, that can compete against humans and new poker

programs. Sparbot and Vexbot were developed by the CPRG, and have been licensed to BioTools

for use in Poker Academy. As this is a standard program that can be bought and used by anyone,

Sparbot and Vexbot are common benchmarks for researchers.

2.3.3 CPRG Programs

The CPRG has several poker agents that have become internal benchmarks that we compare our new

programs to. Throughout this thesis, the majority of the results presented will come from matches

between our new poker agents and these benchmark agents. These benchmark programs are:

• PsOpti4, PsOpti6 and PsOpti7 are ε-Nash equilibrium strategies produced by the techniques

described in [3]. PsOpti4 and PsOpti6 were combined to form Hyperborean06, the winner of

the 2006 AAAI Computer Poker Competition. PsOpti4 is less exploitable than PsOpti6 and

PsOpti7, but PsOpti6 and PsOpti7 play a strategically different style that is useful against

some opponents. Poker Academy’s Sparbot is PsOpti4 marketed under a different name.

• Smallbot 1239, 1399 and 2298 are ε-Nash equilibria strategies produced using a recently

published technique [34]. 1239 and 1399 are weaker than PsOpti4, and 2298 was the CPRG’s

strongest program until the arrival of the programs described in this thesis. Recently, Zinke-

vich, Bowling and Burch verified that if Smallbot2298 had competed in the 2006 AAAI Com-

puter Poker Competition, it would have won [34, p. 792].

• Attack60 and Attack80 are “attack” strategies, similar to best responses in that they are in-

tended to defeat particular opponent strategies. They were generated as byproducts of Small-

bot2298. They are theoretically very exploitable, but form interesting opponents when we are

considering counter-strategies.

While these poker agents are strong opponents, they tend to come from two insular “families”:

the PsOptis and the Smallbots. Although the CPRG has produced many strong poker agents, it is

important to carefully consider the results of matches against externally produced poker agents.
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2.3.4 2006 AAAI Computer Poker Competition Programs

After the 2006 AAAI Computer Poker Competition [18], a benchmark server was established so that

the competitors could test new programs against any of the 2006 entries. Although the CPRG’s entry

(Hyperborean06) won the competition, several other strong and interesting programs were entered.

They include, in the order of their placement in the competition:

• BluffBot, produced by Salonen [24].

• GS2, produced by Gilpin and Sandholm of Carnegie Mellon University. It plays according to

an epsilon Nash equilibria strategy [10].

• Monash-BPP, produced by Korb et al from Monash University. It uses Bayesian reasoning

to adjust its play to suit its opponents [17].

• Teddy, produced by Lynge from Denmark. Teddy is a simple agent that always attempts to

raise at every opportunity.

2.3.5 2007 Computer Poker Competition

As a result of the techniques described in this thesis, two new poker agents were created that were

then entered into the 2007 AAAI Computer Poker Competition. Fifteen competitors from seven

countries submitted a total of 43 new poker agents in three different competitions, giving us the

opportunity to compare our poker agents against the world’s best new computer poker agents. The

results of the match will be explored in Chapter 7.

2.3.6 First Man-Machine Poker Championship

At the 2007 AAAI conference, the University of Alberta hosted the First Man-Machine Poker Cham-

pionship. In this event, two strong poker professionals, Phil Laak and Ali Eslami, competed as a

team in duplicate matches against several of the poker programs produced using the techniques de-

scribed in this thesis. This comparison to human professional players gave us valuable insights into

the strengths and weaknesses of our agents, and an estimate of how well our program’s performance

compares to that of strong humans. The results of this match will also be explored in Chapter 7.

2.4 Extensive Form Games and Definitions

Games such as chess or checkers can be straightforwardly represented by game trees. A game tree

is a directed tree that has one root, corresponding to the initial state of the game. Each game state

where it is one player’s turn to act is represented as a choice node in the tree. The edges from this

choice node to other nodes represent the legal actions the player can choose from, and the states

that those actions will lead to. The terminal nodes of the tree represent the end of the game. Each
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terminal node holds the utility for each players to have reached that outcome. When a game is

represented in this manner, it is called an extensive form game.

When we are using a game tree to represent stochastic games such as backgammon or poker,

we need a way to represent the chance outcomes that occur during the game — the roll of the dice

or the dealing of the cards. We do this by introducing the chance player. The chance events in the

game are represented by a choice node for the chance player, where each action is a possible chance

outcome. At each choice node for the chance player, they choose their actions according to a set

distribution.

In the case of imperfect information games, the players may not be able to differentiate between

different game states. For example, at the start of a poker game, each player has received their own

cards (the chance player has acted), but they do not know what cards their opponent is holding.

Thus, if they hold K♠K♥, they cannot tell if they are in the game state where their opponent holds

2♥7♣ or A♠A♦. We use the term information set to refer to a set of game states between which

one player cannot differentiate. Since a player cannot tell the difference between states in the same

information set, they must choose their actions according to the same distribution for all game states

in the information set. Note that, in games like poker, the number of game states is far larger than

the number of information sets. An extensive form game tree for an imperfect information game is

a game tree where each choice node is a member of one information set.

2.4.1 Definitions

The following formalism of extensive games is due to Osborne and Rubinstein [22]:

Definition 1 [22, p. 200] a finite extensive game with imperfect information has the following

components:

• A finite set N of players.

• A finite set H of sequences, the possible histories of actions, such that the empty sequence is

in H and every prefix of a sequence in H is also in H . Z ⊆ H are the terminal histories

(those which are not a prefix of any other sequences). A(h) = {a : (h, a) ∈ H} are the

actions available after a nonterminal history h ∈ H ,

• A function P that assigns to each nonterminal history (each member of H\Z) a member of

N ∪{c}. P is the player function. P (h) is the player who takes an action after the history h.

If P (h) = c then chance determines the action taken after history h.

• A function fc that associates with every history h for which P (h) = c a probability measure

fc(·|h) on A(h) (fc(a|h) is the probability that a occurs given h), where each such probability

measure is independent of every other such measure.

• For each player i ∈ N a partition Ii of {h ∈ H : P (h) = i} with the property that

A(h) = A(h′) whenever h and h′ are in the same member of the partition. For Ii ∈ Ii
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we denote by A(Ii) the set A(h) and by P (Ii) the player P (h) for any h ∈ Ii. Ii is the

information partition of player i; a set Ii ∈ Ii is an information set of player i.

• For each player i ∈ N a utility function ui from the terminal states Z to the reals R. If

N = {1, 2} and u1 = −u2, it is a zero-sum extensive game. Define ∆u,i = maxz ui(z) −

minz ui(z) to be the range of utilities to player i.

In the above description, we have defined the concept of the information partition without stat-

ing how the information partition is chosen. The standard information partition used for studying

imperfect information games is to have each information set for player i contain the game states

(or equivalently, histories) that vary only by the hidden information which player i cannot see. Fig-

ure 2.1 shows an example: the two choice nodes vary vary only because of our opponent’s cards,

and an information set contains these game states. From our perspective, we cannot tell if the op-

ponent has the pair of twos or the pair of kings. During a game, we only know the information set

we are in, and not the particular game state within that information set. Since we cannot tell the

difference between the game states within the information set, any plan we have of how to act from

that information set must be used for all game states within the set. In Figure 2.1, we cannot decide

to raise when the opponent has the pair of twos and call when they have the pair of kings. Since we

cannot tell which state we are in, we must choose an action (or probability distribution over actions)

to use when we encounter the information set.

Now that we have defined the notion of a game, we will describe what we mean by a strategy. A

strategy is a static plan for playing the game. A strategy does not change over time or adapt to any

opponent; it is simply a formula for how to act at each possible information set. A pure strategy is

a strategy where, for every information set, one action is always selected from that information set.

For example, a strategy that always bets when it holds a pair of aces during the Preflop could be part

of a pure strategy. A behavioral strategy is a strategy that selects actions with different probability

distributions for each information set. For example, a strategy that sometimes calls and sometimes

raises when holding a pair of aces during the Preflop would be a behavioral strategy. Note that the

space of all possible behavioral strategies is infinite, as the range of probabilities that can be assigned

is continuous.

We will now formally define the idea of strategies and strategy profiles [36]:

Definition 2 A strategy of player i σi in an extensive game is a function that assigns a distribution

over A(Ii) to each Ii ∈ Ii, and Σi is the set of strategies for player i. A strategy profile σ consists

of a strategy for each player, σ1, σ2, . . ., with σ−i referring to all the strategies in σ except σi.

Let πσ(h) be the probability of history h occurring if players choose actions according to σ. We

can decompose πσ = Πi∈N∪{c}π
σ
i (h) into each player’s contribution to this probability. Hence,

πσ
i (h) is the probability that if player i plays according to σ then for all histories h′ that are a

proper prefix of h with P (h′) = i, player i takes the corresponding action in h. Let πσ
−i(h) be
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Figure 2.1: A poker example of information partition of the state space into information sets. We
cannot distinguish between the choice nodes descendent from the two chance nodes that assign cards
to our opponent. An information set contains these game states that we cannot distinguish between.

20



the product of all players’ contribution (including chance) except player i. For I ⊆ H , define

πσ(I) =
∑

h∈I πσ(h), as the the probability of reaching a particular information set given σ, with

πσ
i (I) and πσ

−i(I) defined similarly.

The overall value to player i of a strategy profile is then the expected payoff of the resulting

terminal node, ui(σ) =
∑

h∈Z ui(h)πσ(h).

This formal description of strategies, strategy profiles, and histories will be used when describing

other work in this area and in the contributions of this thesis.

2.4.2 Nash Equilibria

Now that we have defined strategies and strategy profiles, we will revisit the concept of the Nash

equilibria and define it formally. A Nash equilibrium is a strategy profile σ where no player can

increase their utility by unilaterally changing their strategy:

u1(σ) ≥ max
σ′1∈Σ1

u1(σ′1, σ2) u2(σ) ≥ max
σ′2∈Σ2

u2(σ1, σ
′
2). (2.1)

This means that for player 1, there is no other strategy in Σ1 that would produce more utility

against σ2 than its strategy in σ. The same is true of player 2.

In the huge poker abstractions that we are interested in solving, it is not feasible to find the

precise Nash equilibrium. Instead, we try to find approximations of Nash equilibria. An ε-Nash

equilibrium is a strategy profile σ where no player can increase their utility by more than ε by

unilaterally changing their strategy:

u1(σ) + ε ≥ max
σ′1∈Σ1

u1(σ′1, σ2) u2(σ) + ε ≥ max
σ′2∈Σ2

u2(σ1, σ
′
2). (2.2)

This means that for player 1, there is no strategy in Σ1 that produces more than ε more utility

against σ2 than its strategy in σ.

2.4.3 Sequence Form

Strategies for extensive form games can be represented in several ways. One straightforward way

would be to enumerate all possible information sets and record the probabilities of taking each action

from that information set.

An alternate method of representing a strategy is to store the probability of playing along each

sequence of actions. Consider a sequence of actions by a player and its opponents that have reached

a terminal state. Assuming that the chance player and the opponent play to reach this outcome, we

can find the probability of the player selecting their actions in this sequence. This is simply πσ
i (h)

as defined above, and is known as a realization weight.

A set of realization weights defines a strategy. To find the strategy’s action probabilities at

an information set during a game, for each action we can find the sum of the realization weights
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associated with terminal nodes reachable after taking that action. Storing our strategies in this way

requires memory proportional to the number of terminal sequences.

In 1994, Koller, Megiddo and von Stengel proposed using the sequence form as a way to use

linear programming to find a Nash equilibrium strategy [16]. A linear program can be created to

find optimal realization weights subject to constraints (action probabilities are non-negative and sum

to 1). The result is a pair of strategies that are best responses to each other: a Nash equilibrium. This

approach was a large improvement over previous techniques, and in addition to other applications,

was used to produce several strong poker programs [3, 10]. Examples of poker programs created by

this technique will be discussed in Section 2.6.2.

2.5 Abstraction

Heads-up Limit Texas Hold’em is a game with approximately 3.16 ∗ 1017 nonterminal game states

and 3.19 ∗ 1014 information sets. Since a behavioral strategy consists of a probability distribution

over actions for each information set, using two 8 byte floating point numbers to store each 3 action

probability distribution would require more than 4.5 petabytes of memory to store one strategy1. Our

best known approach to calculating an approximate Nash equilibrium requires time proportional to

the number of information sets; when the number of information sets is this large, the problem

appears intractable.

We need a method to create an abstract version of poker that has fewer game states and infor-

mation sets, with the property that the abstract game shares the same strategic properties as the full

game. By doing so, we can create winning strategies in the abstract game that will also perform well

in the real game.

2.5.1 Card Isomorphisms

The simplest abstraction is to abstract out the suits of the cards. For example, we can merge the

game states for A♣2♣ and A♥2♥ or K♣7♠ and K♥7♦ into the same states. This abstraction does

not lose any information, as there is no strategic value to choosing different actions on identical

hands that vary only by a suit rotation. This offers a reduction in the number of game states of at

most 4! [4, p. 83], but does not reduce the state space by the amount we require.

2.5.2 Action Abstraction

Another way to reduce the size of the game is to limit the number of actions that are available. In

Limit Hold’em, for example, we can restrict the maximum number of bets to three bets per round

instead of four. In theory, this limits the maximum amount it is possible to win from an opponent, but

cases where the betting reaches its limit are not common in practice. In one experiment, Zinkevich et

1The sequence form is more compact, as it stores one probability of reaching each terminal node. In sequence form, there
are 5.42 ∗ 1014 histories, and a strategy would require approximately 3.8 petabytes

22



al found that an approximate Nash equilibrium in a game with a betting abstraction which considered

at most 2 bets in the Preflop and 3 in the remaining rounds was 11 mb/g exploitable in its own

abstraction, and 27 mb/g exploitable in the same card abstraction with full betting [34]. While

this is not a trivial difference, the state space reduction is considerable, reducing the number of

nonterminal betting sequences from 6378 to 2286. However, this abstraction on its own is still not

sufficient to reduce the game to a tractable size.

2.5.3 Bucketing

A common and successful technique for reducing the size of the game to a tractable size is buck-

eting. On each round, we will partition the possible cards held by a player and on the board into a

fixed number of buckets, with the intent that hands with similar strategic properties share the same

bucket. One approach for doing this is to divide hands into buckets based on their strength, such

that weak hands are grouped into low numbered buckets, and strong hands are grouped into high

numbered buckets.

The bucket sequence is the sequence of buckets that the player’s cards were placed into on each

round. For example, if a player had a weak hand on the Preflop and the Flop cards made it a strong

hand, then their hand may have been in bucket 1 on the Preflop and bucket 5 on the Flop. In the

bucket abstraction, a strategy is defined over bucket sequences, and not over cards. This means that

a strategy has to act with the same action probabilities for all hands with the same bucket sequence.

A hand that progresses from bucket 1 to 5 is strategically distinct from one that progressed from

bucket 4 to 5, but any two hands that progress through the same bucket sequence are treated as if

they were identical.

This approach allows us to greatly reduce the number of game states. If we select a small number

of buckets (5 or 10, for example), then our 1326 possible combinations of Preflop cards get reduced

to a tractable number. As a consequence, strategies in the abstract game may no longer be capable of

optimal play in the real game, as there may be subtle differences between hands in the same bucket

that require different action probabilities.

Assuming an even distribution of hands into buckets, if we increase the number of buckets we

use, each bucket will contain fewer hands. Since all hands in a bucket must be played according

to the same action probabilities, this leads to fewer cases where a strategy is forced to consider

suboptimal action probabilities for a particular hand. In other words, as we use more buckets, we

get closer to playing the real game, and the performance of our strategies should increase.

To completely define the abstract game, we need two more pieces of information. First, we

need to know the probability of every bucket sequence winning a showdown against every opponent

bucket sequence. This tells us about the strength of the bucket sequence we are in. Second, we need

to know the probability, given a bucket sequence, of reaching every possible bucket on the following

round. This tells us about the properties of our current bucket sequence; for example, does it have
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the potential to progress to a bucket sequence with a high probability of defeating the opponent? Is

it likely to win against some of the possible opponent buckets, but is unlikely to improve during the

next round?

To make the most of the buckets we choose to use, however, we would like to sort our card

hands into buckets such that all of the cards in each bucket are strategically similar. In other words,

we want to sort hands into buckets such that we would choose similar action probabilities for all

hands in the bucket. To do this, we will choose a function that defines a many-to-one mapping of

hands into bucket sequences. The card isomorphism abstraction described in Section 2.5.1 is one

simple example of this. In the remainder of this section, we will present three alternate methods for

partitioning the possible hands into bucket sequences.

Before continuing, we will note that the number associated with each bucket does not necessarily

reflect the strength of the hands associated with it; each bucket is an abstract collection of hands that

can be assigned by an arbitrary ranking. However, in practice, we find it convenient to number our

buckets such that hands in a higher numbered bucket are “stronger” than those in a lower numbered

bucket. We will continue to use this convention for examples, although it does not hold in theory.

2.5.4 PsOpti Bucketing

As we mentioned earlier, one straightforward way to partition hands into buckets sequences is to

consider the “strength” of the hands. If a hand is at a showdown (there are no additional cards to

be dealt), we will use the term hand strength to refer to the probability of that hand being stronger

than a uniformly random opponent hand, where a tie counts as half a win. To measure the strength

of a hand when there are more cards to be dealt, we will use a metric called 7 card hand rank [3].

To calculate the 7 card hand rank metric for a given a set of cards (for example, 2 private cards

on the Preflop, or 2 private cards and 3 public cards on the Flop), we roll out the remaining public

cards and opponent private cards, and find the overall probability of this hand winning a showdown

against a random two-card hand. Since the metric values the original hand as the expected value of

the roll-out hand strength, we will also call it E[HS].

The metric for any hand is then a number in the range [0,1]. We can then use this E[HS] metric

to order all possible hands at each round; a hand with a greater value is “more likely” to win at a

showdown 2.

We could use this method alone to sort hands into buckets. If we wanted to use N buckets,

then we could assign the hands where their E[HS] value is in [0, 1/N ] to bucket 1, (1/N , 2/N ] to

bucket 2, and so on. We call this uniform bucketing, as each bucket contains an equal sized range of

possible E[HS] values.

However, this approach assumes that all possible hands can be accurately evaluated along one

2Note that the E[HS] metric assumes that the opponent’s private cards are selected randomly. Hands with a higher
E[HS] rank are only “more likely” to win under the assumption that our opponent will possess any pair of private cards with
equal probability. This is unrealistic; an opponent that has bet aggressively might be more likely to hold strong cards.
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dimension, and this is not the case. Some hands can improve in strength dramatically as more cards

are added, whereas others cannot. For example, the Preflop hand 8♣9♣ has the potential to turn

into a very strong hand if the Flop contains three clubs (making a Flush) or a 5, 6, and 7 (making

a Straight). A Preflop hand such as 2♠7♥, is less likely to be used in a Flush or a Straight. We

are interested in the variance in the strength of a hand as more cards are dealt, as hands with high

variance (they are likely to increase or decrease in strength dramatically) are strategically distinct

from other hands. For now, we will concentrate on hands that are likely to improve, and we will say

that these hands have potential.

For the program PsOpti4 [3], the CPRG decided to handle potential in the following way. One

bucket was reserved for weak hands with potential: a hand with a E[HS] value below a threshold,

but which will improve above another threshold with some probability. The remaining (N − 1)

buckets were used for bucketing based on the E[HS] score as described above, with the higher

buckets comprising a narrower range of E[HS] values. This was done to give more information

about the top-ranked hands that will be involved in higher betting (and thus more important) games.

A similar approach was used to create the abstraction for the PsOpti6 and PsOpti7 programs.

2.5.5 More Advanced Bucketing

Currently, the CPRG employs a different method of abstracting the game, which involves four

changes from the simple E[HS] bucketing described above. This method was used to generate

the abstractions used for the agents described in this thesis, and so we will explore it in more de-

tail. The four changes are called expected hand strength squared, nested bucketing, percentile

bucketing, and history bucketing.

Expected Hand Strength Squared

Earlier, we explained how potential was not well measured by the E[HS] metric. In our new buck-

eting approach, we roll out the cards for each hand and measure the expected value of the square of

the hand strength. This approach (abbreviated as E[HS2]) also assigns values in the range [0, 1] to

hands, but assigns a higher value to hands that have potential to improve in strength.

For example, consider two hands, a and b. During the roll-out, we find that a can reach two

hand strength values, with strength 0.4 and 0.6. The E[HS] value for a is then E[HS](a) = (0.4 +

0.6)/2 = 0.5, and the E[HS2] value is E[HS2](a) = (0.42 + 0.62)/2 = 0.25. For hand b, we find

that it can reach two hand strength values, with strengths 0.2 and 0.8. The E[HS] value for b is then

E[HS](b) = (0.2 + 0.8)/2 = 0.5, and the E[HS2] value is E[HS2](b) = (0.22 + 0.82)/2 = 0.68.

While both of these hands have the same E[HS] value, the E[HS2] metric considers the hand with

high potential to be more similar to hands with high hand strength. In practice, the betting strategy

associated with high potential hands is more similar to that of hands with low potential but high hand

strength than it is to hands with moderate hand strength. The E[HS2] metric places high potential
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and high hand strength hands in the same buckets; the E[HS] metric does not. In practice, we have

found that agents produced with the E[HS2] abstraction perform better.

Nested Bucketing

The nested bucketing feature is closely tied to the rationale behind the E[HS2] metric. In the

E[HS2] metric, we have taken two features (potential and hand strength) and placed them onto

a one-dimensional ranking used to divide cards into buckets, while giving potential more value

than it had with the E[HS] metric. We have also considered other bucketing systems that use two

dimensions, and nested bucketing is a step in that direction.

First, we use the E[HS2] metric to collect our possible hands into N sets. Then, within each

set, we use the E[HS] metric to split the set into M buckets. This allows us to separate the high

potential from the high value hands, producing N ∗M buckets.

Percentile Bucketing

In the abstraction used to produce PsOpti4, each bucket specified a range of E[HS] values; hands

with an E[HS] value within that range were assigned to that bucket. This led to buckets containing

an asymmetrical number of hands. In part, this was intended, as the ranges were chosen to permit

fewer hands into the highest valued buckets, to provide better discriminatory power for these impor-

tant hands. However, some buckets were either empty (there were no hands on that round whose

E[HS] value fell within the bounds) or contained so few hands as to be inconsequential.

To address this problem, we use percentile bucketing. If N buckets are being used, the bottom

100/N percent of hands are assigned to the lowest bucket. The next bucket is assigned the next

100/N percent, and so on. This ensures that all buckets contain nearly a nearly equal of hands. This

loses the discriminatory power of having fewer hands in some important buckets, but ensures that

all buckets are used.

History Bucketing

In the abstraction used to produce PsOpti4, the bucket boundaries on each round were chosen inde-

pendently of the buckets observed on previous rounds. For example, a Flop bucket always contained

hands within the E[HS] range [x, y], regardless of which Preflop bucket was observed. A hand

may have had a much lower probability of progressing from Preflop bucket 1 (a weak hand) to Flop

bucket 5 (a strong hand) than progressing from Preflop bucket 5 to Flop bucket 5, but the bucket

sequences 1:5 and 5:5 indicate hands with E[HS] values in the same range.

In the CPRG’s current bucketing method, history buckets are used. We choose ranges for

buckets on the Flop, Turn and River that are dependent on the bucket sequence that came before it.

This means that instead of one set of buckets on the Flop, we have a different set of Flop bucket

boundaries for every Preflop bucket. For example, the hands in Preflop bucket 1 can progress to N
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(a) Expected Hand Strength Bucketing on the Flop (b) Expected Hand Strength Squared Bucketing on the Flop

Figure 2.2: (a) E[HS] and (b) E[HS2] Bucketing. Each point represents one hand, graphed by its
score on the E[HS] and E[HS2] metrics. Both graphs show the hands on the Flop that were in
bucket 2 of 5 on the Preflop. The colors indicate the bucket groupings on the Flop. These graphs
were produced by Carmelo Piccione.

Flop buckets with ranges chosen to suit the hands that came from Preflop bucket 1, while a different

set of N Flop buckets is created for hands that were in Bucket 2 on the Preflop. We are no longer

choosing boundaries for buckets, but for bucket sequences.

For example, assume we are using 5 buckets on each round. The bucket sequence 1:1 (Preflop

bucket 1 and Flop bucket 1) might contain cards with an E[HS2] range of [0, 0.1], while the bucket

sequence 1:5 might contain cards with the E[HS2] range of [0.4, 1]. Since very few low-ranked

cards might progress to such a high hand strength, the size of the 1:5 bucket sequence is large to

accommodate the top 20% of hands. Alternatively, the bucket 5:1 (Preflop bucket 5 and Flop bucket

1) might contain cards with an E[HS2] range of [0, 0.3] (since high hand strength hands are unlikely

to fall too much), while the bucket 5:5 might contain cards with an E[HS2] range of [0.9, 1] (since

high strength hands are more likely to remain high).

By the time the River is reached, three previous buckets have been observed and a very nar-

row range of values can be associated with the fourth bucket. This precision gives strategies in

these abstract games an advantage over strategies in abstractions without history bucketing. Since

our abstractions retain the property of perfect recall (a strategy always remembers its past bucket

sequence), using the history bucketing technique does not increase the number of game states or

impose extra overhead over not using it.

Summary

Using the techniques described above, the CPRG has created abstract games that use 5, 6, 8 and 10

buckets on each round. We have also constructed abstract games that have 10 and 12 nested buckets:

5 and 6 split by E[HS2], and then split into two by E[HS]. As we increase the number of buckets,

we are able to generate poker agents that use strategies that are increasingly effective in the real game
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of poker. In fact, we have yet to see an example where increasing the number of buckets has led to

an inferior program. However, while the number of bucket sequences grows as the quartic of the

number of buckets, the improvement to an ε-Nash equilibrium strategy empirically appears to grow

only linearly; see Table 3.1 in Chapter 3 and note the performance of CFR5, 6, 8, and 10 against

PsOpti4 and Smallbot2298. Thus, compared to the number of bucket sequences, we are obtaining

diminishing returns from increasing the size of our abstraction. This is not unexpected, and is a

useful property: since a small number of buckets is sufficient for strong play, we can concentrate on

small abstractions in which we can quickly produce strategies.

2.6 Related approaches to creating poker agents

There is a long history of techniques for creating poker agents, which have met with varying degrees

of success. In the remainder of this chapter, we will examine several of the recent techniques as case

studies. Each of these techniques represents either a foundation upon which the techniques in this

thesis were based, or a source of agents against which we can compare our new poker agents.

2.6.1 Simulation Based Systems

The Computer Poker Research Group’s first poker agents were Loki and its successor, Poki. In

addition to heads-up Hold’em, Poki also plays ring Hold’em (more than 2 players). It is not only

the CPRG’s only poker agent capable of doing so, but is also the best known artificial agent for ring

games [4, p. 201].

Poki is described as a Simulation Based System [4]. During the Preflop round, Poki uses an

expert system to guide the betting strategy. In the post-flop rounds, Poki uses the hand strength

metric and a measure of potential as inputs into a formula that determine possible actions. It then

uses Monte Carlo roll-outs biased by an opponent model to pick the action with the highest expected

value.

In ring games, Poki was found to be competitive with human players of low-limit games, but was

defeated by more skilled opposition. In heads-up games, however, Poki was not competitive with

even moderate humans. The opponent modeling program Vexbot, to be discussed in Section 2.6.4,

was able to defeat it by 601 millibets/hand — a very large margin [27]. Against PsOpti4, an ap-

proximate Nash equilibria program that plays a cautious game without trying to exploit its opponent,

Poki lost 93 millibets/hand. In other games, Poki has been consistently beaten at 800 millibets/game,

which is more than it would lose by folding every hand at the start of each game [4, p. 93].

Poki was designed to play ring games, and heads-up games are significantly different. In heads-

up play, aspects of poker such as the need for deception and opponent modeling are much more

pronounced. Since neither player is likely to have a very strong hand, players are forced to play with

weak hands more often, and as a result must be better at obfuscating their strength and inferring that

of their opponents. In ring games, it is more likely that at least one player at the table will have a
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strong hand, and so bluffing actions are less likely to succeed. Poki was not designed to excel at

tricky play, and so it was too predictable and trusting of its opponents’ actions.

2.6.2 ε-Nash Equilibria Strategies

In Section 2.1, we described the idea of ε-Nash equilibrium strategies and motivated their use. An

equilibrium strategy plays close to the Nash equilibrium in its abstraction, making it near-unbeatable

by any other strategy in that abstraction. If the abstraction is strategically similar to the real game,

then these equilibrium strategies can also be very difficult to defeat in the full game. There have

been several approaches towards creating ε-Nash equilibria agents for poker. In this section, we will

present three examples. In Chapter 3 we will describe a new approach to finding ε-Nash equilibrium

strategies, and it will be useful to compare it against these existing techniques.

PsOpti4, PsOpti6, and PsOpti7

PsOpti4, PsOpti6, and PsOpti7 play in abstractions similar to the one described above in Sec-

tion 2.5.4. The PsOpti family of strategies are created by converting the abstract extensive game

into sequence form. The sequence form can then be treated as a series of constraints in a linear

program, using the approach developed by Koller, Megiddo and von Stengel [16]. An LP solver

can then be used to find an ε-Nash equilibrium strategy.

In the case of the PsOpti family of programs, however, the LP needed to solve the entire abstract

game was too large to fit into a computer’s memory. To simplify the problem, two additional sim-

plifications were used. First, action abstraction was used so that one less bet was allowed on each

round (2 on the Preflop, 3 on the other rounds). Second, the game was broken up into several smaller

parts of the game tree. First, a 3-round Preflop strategy that assumes the players call on the River

was solved. This strategy was used only for Preflop play. Then, seven 3-round Flop strategies were

created; each one assumes a different Preflop betting sequence (check-call, check-bet-call, etc) was

followed. This combination of strategies was then used to compose the overall strategy. The Preflop

strategy was only used on the Preflop, after which the post-flop strategy that matched the Preflop

betting was followed.

This disconnect between the Preflop strategy and the strategy used in the rest of the game was a

flaw in the PsOpti agents that could be exploited. When the CPRG moved to strategies that formed

one cohesive strategy for the whole game, such as Smallbot2298 (to be discussed in Section 2.6.2)

or the new ε-Nash equilibria strategies discussed in Chapter 3, we saw an immediate increase in

performance.

GS1 and GS2

GS1 [10] and GS2 [11], produced by Gilpin and Sandholm, are members of the Gameshrink family

of ε-Nash equilibria agents. In the 2006 and 2007 AAAI Computer Poker Competitions, GS2 and its
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successor GS3 have shown to be competitive opponents, taking 3rd place in the 2006 Series event,

3rd place in the 2007 Equilibria and Online Learnings events, and 2nd place in the 2007 No-Limit

event.

While their approach shares a common foundation with that of the CPRG’s PsOpti agents, they

use different terminology. In their approach, a hand strength metric such as our E[HS] is called

an ordered signal; instead of cards, the agent receives a signal whose value corresponds to the

probability of winning the hand. Instead of the term “bucket”, they use the term information filter,

which coarsens the ordered signal into a discrete value.

Both GS1 and GS2 compute a truncated ε-Nash equilibrium strategy to use in the Preflop and

Flop rounds. For GS1, this truncated strategy considers the betting and cards on the Preflop and Flop

rounds; GS2 considers the betting and cards on the Preflop, Flop and Turn rounds. Both programs

use terminal nodes after this point to represent the estimated outcome of the remaining rounds.

This estimate of the outcome depends on the remaining cards (the probability of winning) and the

remaining betting (the magnitude of the win or loss). Both GS1 and GS2 find the probability of

winning by rolling out the remaining filtered signals. GS1 assumes that both players call during the

Turn and River rounds. GS2 uses an estimate of the betting strategy for Sparbot (the commercial

name for PsOpti4), conditioned only on the cards and not on the earlier betting, as an estimate for

the betting actions by both players on the River.

After the Turn card is dealt, in real time, the program constructs a linear program and solves it

to find a new equilibrium strategy to use on the Turn and River rounds. At this point, the Preflop,

Flop, and Turn cards are known, so the LP uses a precomputed abstraction that corresponds to this

particular combination of Flop and Turn cards. For speed, 135,408 of these precomputed abstrac-

tions are calculated offline. This provides a much more precise idea of the hand strength at this

point in the game than the past filtered signals (buckets) could provide. Bayes rule is used to find

estimates of the opponent’s hand strength given their Preflop and Flop betting, with the assumption

that the opponent is also playing according to the precomputed strategy. The LP to be solved is thus

designed for the current game state: it considers only the betting history that actually occurred, and

the abstraction is tailored for the public cards that were dealt.

This LP is then solved in a separate process while the game is being played. Whenever an action

is required, the LP can be interrupted and an intermediate solution can be used to choose an action.

While this allows the agent to produce actions on demand, there is a danger that, as the LP solution

is further refined, this intermediate action is no longer part of the solution to the LP. This is called

“falling off the tree” — since the strategy would never have selected that action (it is no longer part

of the game tree), it is unable to suggest future actions after that action. In these cases, the agent

simply calls for the remainder of the game.

The main advantage of this approach is that, in theory, the equilibria strategy for the Turn and

River rounds will be more accurate than an equilibria strategy in a normal bucket abstraction. This
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is because of the precise card information from the Flop and Turn cards.

However, there are several disadvantages to this approach. One significant disadvantage is that

solving the LP in real-time is not a task that can be computed quickly. In the 2006 AAAI Series

event, the players were allocated up to 60 seconds per hand to make their decisions. This was an

unusually large allotment of time for poker games. In the 2006 AAAI Bankroll event, there was a 7

second time limit per game. In practice, even generating the LP cannot be done quickly enough to

be used during play.

Just as the Preflop / Postflop split was a disadvantage for the PsOpti agents, the split between

early game and late game play was a large disadvantage for GS2. By assuming that both players

will only call during the Turn and the River, the Preflop and Flop strategy does not have an accurate

estimate of the utility of certain lines of play. In poker, there is a concept called implied odds that

is relevant here; if you have a strong hand that is likely to win, you need to consider not only the

money in the pot but also your bets that your opponent must call in future rounds. Since the Turn

and River rounds have larger bet increments than the Preflop and Flop, assuming that both players

will simply call (as GS1 does) gives too little utility to strong hands, and too much utility to weak

hands. Another disadvantage is the assumption that the opponent’s hand distribution is dependent

on GS2’s preflop strategy. If the opponent does not follow the same Preflop betting strategy as GS2

(and playing by a different strategy is very likely), then the LP used later in the game assumes an

inaccurate strength for the opponent’s hand.

Smallbot2298

Smallbot2298 [34] is a recent addition to the CPRG’s collection of ε-Nash equilibrium agents, and

before the agents produced by the techniques described in this thesis, it was our strongest agent. It

was produced by a method that does not directly involve solving a linear program, as was used for

the PsOpti family and for GS2. It was also one of the first ε-Nash equilibrium strategy to use one

consistent, whole-game strategy, as opposed to the overlapping strategies used for PsOpti and GS2.

Smallbot2298 was produced by the novel “Range of Skill” algorithm developed by Zinkevich et

al [34]. The guiding idea is to consider creating a sequence of agents, where each one can defeat

the agents earlier in the sequence by at least ε. For any game and a value for ε, this sequence has

a maximum length — eventually, the sequence approaches within ε of a Nash equilibrium, and no

further agents are able to defeat it by more than ε. An illustrative example is to consider games such

as Go, Chess, and Tic Tac Toe. The sequence of human Tic Tac Toe players would be very short;

one claim that Go is more complex than chess is that the sequence of human experts for go is longer

than that of chess [21].

To construct this sequence of agents, we apply two algorithms. The first algorithm, generalized

best response, considers a bimatrix game where player 1 is restricted to a set of allowed strategies

S′
1, and player 2’s set S′

2 contains one arbitrary strategy. Next, we compute a Nash equilibrium in
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this bimatrix game, where players 1 and 2 produce mixed strategies from the sets S′
1 and S′

2. We

then calculate the best response to player 1’s equilibrium strategy, and add it to S′
2, giving player 2

another option. After many repetitions of this algorithm, we return player 2’s half of the equilibrium

strategy, σ2, as a best response to player 1’s entire set of strategies S′
1.

The second algorithm, range of skill, repeatedly calls the generalized best response algorithm.

We start by initializing a set of “allowed strategies” to contain an arbitrary strategy, and use gener-

alized best response to calculate an equilibrium strategy for one player in the restricted game where

the other player may only mix between the set of allowed strategies. This resulting strategy is ca-

pable of defeating any of the strategies in the set. We then add that strategy to the set of allowed

strategies, and call generalized best response again.

Each strategy returned by the generalized best response algorithm in this way is a member of

the “range of skill” described earlier, as each one is capable of defeating the strategies generated

before it. As our sequence of strategies grows, the most recent strategies at the end of the sequence

approach a Nash equilibrium.

Memory requirements are both the main advantage and disadvantage of the Range of Skill algo-

rithm. Since the generalized best response algorithm only considers finding an ε-Nash equilibrium

in the restricted bimatrix game where players must pick from a fixed set of strategies, it avoids the

problem of solving an LP for the 4-round abstract game that hinders the PsOpti and Gameshrink

approaches. This memory efficiency is what made it possible to produce one of the first full-game

strategies for Texas Hold’em, avoiding the strategy fragments that the PsOpti and Gameshrink pro-

grams used.

The main disadvantage of the Range of Skill algorithm is the amount of intermediate data that

must be stored. Each intermediate strategy generated by the algorithm must be stored for use in

future steps, such as when constructing the utility matrix. This data can be stored on a hard disk as

opposed to in RAM, but must still be loaded and unloaded intermittently. The storage required for

the strategies and the time cost of loading these strategies from disk can make this approach difficult

to scale to larger abstractions.

2.6.3 Best Response

Given a poker strategy σ, it is natural to wonder what the strongest possible opponent to that strategy

is. This is a common question in game theory, and the counter-strategy is called the best response.

Calculating a best response to the opponent’s strategy is very computationally expensive, and so we

compromise by calculating a best response strategy to σ in the same abstract game that σ plays.

The resulting strategy is an approximation of the real best response, and we call it an abstract game

best response. At every information set, the abstract game best response strategy chooses the action

that maximizes its utility, given the probability of σ reaching every terminal node descendant from

every game state in the information set and the utility associated with that terminal node. A formal
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description of this algorithm will be presented in Chapter 4.

The abstract game best response strategies allow us to answer important questions about other

strategies. For example, if σ is an ε-Nash equilibrium, playing the abstract game best response

strategy against σ tells us how far from the equilibrium σ is in its own abstraction — in other words,

it tells us the ε for this ε-Nash equilibrium strategy. If we intend to use an exploitative program to

win as much money as possible from σ, the abstract game best response gives us a lower bound

on the exploitability of σ. Since the abstract game has less information than the full game, a best

response in the full game (or in a more informative abstract game) can achieve an even larger result

than an abstract game best response.

The abstract game best response approach has requirements that limit its use. First, the algorithm

needs to know how the strategy acts at every information set. This means that it is difficult to

calculate an abstract game best response to an opponent’s strategy, unless they choose to provide

you with its details. Second, the abstract game best response has to be calculated in the same

abstraction as the original strategy. These factors limit its usefulness against arbitrary opponents,

but it remains a useful tool for evaluating other strategies that you create.

2.6.4 Adaptive Programs

Vexbot [5] and BRPlayer [27] are different types of poker agent than those that we have discussed so

far. Vexbot and its successor, BRPlayer, are adaptive programs that build an opponent model online,

and use strategies calculated to exploit that model.

Vexbot and BRPlayer use miximix search. This is similar to the expectimax search technique

used for stochastic games, extended to accomodate imperfect information games. In a miximix

search, we search a game tree where an opponent model predicts the opponent’s action probabilities

at each of their choice nodes, and predicts the utility for reaching each terminal node. A special case

of miximix search, called miximax, chooses the one action at each information set that maximizes

the expected utility. In miximix search, the goal is to obtain a high utility value, but to use a mixed

strategy to avoid being predictable to the opponent.

The opponent model needed by miximix search must predict two types of information: opponent

action probabilities at their choice nodes, and the utility for reaching each terminal node. To predict

the opponent action probabilities, Vexbot and BRPlayer measure the frequency of the opponent’s ac-

tions for each betting history. Note that this approach does not consider the public card information.

During the miximix search, at opponent choice nodes, these frequency counts are used to predict

their actions.

The utility for reaching a terminal node is the product of the size of the pot (determined by

the betting sequence) and the probability of winning (determined by the players’ private cards and

the public cards). Since the betting sequence and our own cards are known, we need to predict the

strength of the cards the opponent is holding. For each terminal node, Vexbot and BRPlayer maintain
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a histogram that stores the observed frequency with which the opponent reached that terminal node

with given ranges of hand strength. For example, at a terminal node with a large pot, the opponent

might have displayed cards with a hand strength in the range 0.0-0.2 twice (when they bluffed) and

in the range 0.8-1.0 four times. This histogram can then be used to predict our probability of winning

with a particular hand. Using the earlier example, if Vexbot has a hand strength of 0.5, it can expect

to win 2/6 times (the frequency with which the opponent bluffs) and lose 4/6 times (the frequency

with which the opponent has legitimate hands).

On each hand of play, Vexbot and BRPlayer use miximix search and their opponent model to

choose actions. As each action and showdown is observed, the opponent model is updated, to pro-

vide a more accurate model for future hands. Early in the game, observations are still sparse and the

terminal node histograms described above may not yet have enough information to make accurate

predictions. To solve this problem, Vexbot considers the histograms of similar terminal nodes and

weights them according to their similarity and number of observations. BRPlayer considers more

types of similar situations than Vexbot does, and this is the difference between the two implementa-

tions [27, p. 73].

The main advantage of Vexbot and BRPlayer is their ability to learn online and adapt their play to

exploit their opponent. In experiments performed by Billings and colleagues [5], Vexbot was shown

to defeat PsOpti4, and to defeat a variety of opponents by a much greater margin than PsOpti4 did.

This shows the value of an adaptive strategy over a Nash equilibrium strategy. As we mentioned in

our description of poker, exploitation is important: the goal is not necessarily to not lose , but to win

as much as possible from each opponent.

Vexbot and BRPlayer have several disadvantages. One of these is that at the start of a match,

Vexbot and BRPlayer do not know the rules of poker, and they can develop impossible beliefs about

the game. The miximax search models the effect of chance nodes on their own hands, but there is

nothing in the program or the opponent model that defines how the opponent’s hand is drawn from

the deck. Instead, the knowledge about the possible hands the opponent can have is learned through

observation, and is represented in the histograms at the terminal nodes. If the game starts with a

lucky set of cards for the opponent, for example, Vexbot and BRPlayer can learn that their opponent

always wins at showdowns and never folds. These observations can affect the miximix search such

that it avoids lines of play where it (incorrectly) believes it will always lose; it may take many more

hands of observations to correct this mistake.

An additional disadvantage is that Vexbot and BRPlayer can require a large number of hands

before developing a useful model of their opponent. Schauenberg ran three experiments where

BRPlayer tried to model and defeat PsOpti4 [27, p. 70]. In one of these experiments, BRPlayer

required approximately 15,000 games before it did better than break even against PsOpti4. In the

other two experiments, BRPlayer required approximately 170,000 games before it did better than

break even. Competitions such as the AAAI Computer Poker Competition obtain their results by
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running several matches of at most 3,000 games. In this short of a timespan, Vexbot and BRPlayer

may not have enough time to develop a useful opponent model.

2.7 Teams of programs

If you have several poker agents to choose from, one approach is to combine the agents into a team

and use a meta-agent to select which agent to use for any given hand, based on each agent’s past

performance. This is a difficult task, as poker has high variance from hand to hand. If the variance is

not taken into account, an unlucky series of hands may give one agent such a poor past performance

that it will not be chosen again. In this section, we will present one past example of a team of agents

that the CPRG has entered into a competition, and discuss an established framework for using teams

of agents that will be used later in this thesis.

2.7.1 Hyperborean06 and Darse’s Rule

In the 2006 AAAI Computer Poker Competition, the CPRG entry, called Hyperborean, was actually

two programs: PsOpti4 and PsOpti6, as described in Section 2.3.3. Although both are ε-Nash

equilibria programs and PsOpti4 is less exploitable (and thus by one metric, superior to) PsOpti6,

we found that the two agents played with slightly different styles. Against some opponents, PsOpti6

performed better than PsOpti4, and vice versa. Another motivation for using PsOpti6 was that

PsOpti4 was publicly available under the name Sparbot in the commercial program Poker Academy.

Although PsOpti4 was believed to be stronger, it was important to have another strategy to switch to

in case an opponent entered a counter-strategy to PsOpti4. To try to increase our winnings against

exploitable opponents, and to avoid being exploited by a counter-strategy, the two programs were

entered as a team, with a “coach” agent that would choose which agent to use on each hand.

The coach was guided by a simple rule called “Darse’s Rule”. After each hand played by either

agent, we knew the score for that hand and, if the hand went to a showdown, the opponent’s private

information. Since the score on each hand has high variance (+- 6 sb/g, as mentioned in Section 2.2),

it used a variant of DIVAT analysis called Showdown DIVAT to reduce the variance when choosing

which strategy to use.

For each agent, we tracked the sum of the Showdown DIVAT scores from the hands they had

played. On each hand, we divided the accumulated Showdown DIVAT score by the square root of

the number of hands that agent had played; the agent with the higher resulting value was chosen

to play the next hand. This algorithm was slightly adjusted by variables to give an advantage to

programs that had not yet been used, to ensure that each agent received a chance to display their

value.

In a post-tournament analysis, we found that PsOpti6 was more effective than PsOpti4 when

playing against some opponents, and that the coach using Darse’s rule selected PsOpti6 more often

in such circumstances. By using the coach and selecting between the two programs, Hyperborean06
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performed better than either strategy on its own would have. We will revisit this idea in Chapter 6,

where we will show that a team of robust agents can be more effective than an equilibrium strategy

against unknown opponents.

2.7.2 UCB1

UCB1 is a regret minimizing algorithm for acting in the multi-arm bandit task [1]. In the multi-arm

bandit task, there are several slot machines that each have a different unknown reward distribution.

The goal is to maximize the reward gained from the machines. Since the reward distribution for

each machine is not known, a policy must be established that trades off exploration (trying a variety

of machines to learn the expected value of each one) and exploitation (using the machine with the

highest experimental expected value to maximize earnings).

Define an allocation strategy A to be a method for choosing the next slot machine to play, given

the history of choices and rewards. Then, we can define our regret to be the difference between

the reward we could have received by always picking the best slot machine and the reward we did

receive by following allocation strategy A. Regret is thus similar to the economics notion of an

opportunity cost: it is the penalty you suffer by not picking a different choice.

The UCB1 algorithm defines an allocation strategy where the regret from following the strategy

grows logarithmically in the number of trials; this means that the average regret approaches zero.

This makes it useful for selecting which slot machine to use. Our task in managing a poker team is

very similar. If we are playing against a stationary opponent, then there is an unknown utility for

playing each of our agents against the opponent. The utilities are subject to variance and we may

not have prior knowledge of their distribution. During the match, we need to try different agents to

find out which has the highest expected utility, and also maximize our winnings by using our current

best agent.

The UCB1 allocation strategy is [1]:

Initialize by using each agent once. Then, use the agent j that maximizes x̄j +
√

2 ln n
nj

, where x̄j is

the average utility for agent j, n is the total number of trials, and nj is the number of times agent j

has been selected.

(2.3)

In Section 6, we will describe how to use the UCB1 algorithm to choose agents from a team of

strategies when competing against opponents.
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2.8 Summary

In this chapter, we have presented examples of several techniques for poker agents. In the remain-

der of this thesis, we will present a series of techniques that each surpass the approaches we have

just described. We will show how to calculate approximations to a Nash equilibrium in larger ab-

stractions than previously possible, how to calculate “good responses” with fewer restrictions than

the traditional best response algorithm, and robust counter-strategies that exploit an opponent while

minimizing their own exploitability. We will begin presenting the contributions of this work with

Counterfactual Regret Minimization, a new technique for finding ε-Nash equilibrium strategies.
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Chapter 3

Playing to Not Lose:
Counterfactual Regret Minimization

3.1 Introduction

In this chapter, we will present a new technique for finding ε-Nash equilibrium strategies, which

were first mentioned in Section 2.1. Examples of past approaches to finding ε-Nash equilibria

strategies were discussed in Section 2.6.2. These programs approximate an unbeatable strategy,

with the intent that they will do no worse than tie against any opponent. If the opponents (humans,

for example) make mistakes, then the equilibrium strategy can win over time. This property makes

equilibrium strategies valuable in any game, and they have been particularly successful in poker.

In Section 2.6.2, we described three past approaches for finding equilibria strategies (such as

PsOpti, Smallbot and GS2) in Heads-Up Limit Texas Hold’em. One common drawback to these

approaches is that they all require memory linear in the number of game states. Past results have

shown that the quality of our strategies directly improves as we increase the size of our abstraction;

in general, an equilibrium in a 5-bucket game will lose to an equilibrium in a 6-bucket game. While

there is an orthogonal advantage to improving the quality of the abstraction, we are interested in

solving the largest abstractions possible. In short, we want to use the largest abstraction available

that fits within the limits of the memory of our computers and the time we have available.

In this chapter we will propose a new approach, called Counterfactual Regret Minimization

(CFR), which requires memory linear in the number of information sets, not game states. This

allows us to solve much larger abstractions than were possible with the previous methods. This

produces ε-Nash equilibrium strategies that are closer to the real game’s Nash equilibrium. Using

this approach, we found ε-Nash equilibria strategies in abstractions two orders of magnitude larger

than had been achieved by previous methods. 1

1The theoretical background of the Counterfactual Regret Minimization technique was developed by Zinkevich, and is
presented in a paper coauthored by Zinkevich, the author, Bowling and Piccione [36]. The theoretical background of CFR is
not a contribution of this thesis. The author’s contribution in this chapter is the practical implementation, optimization and
parallelization of a program for generating CFR strategies. In this chapter, we will present an overview of the technique, and
will highlight the author’s contributions and the results.
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In Section 3.2, we will provide a high-level description of the technique. In Section 3.3, we will

explain the key theoretical foundations of the technique; the full details and theoretical proofs can be

found in a separate technical report [35]. In Section 3.4.3, we will explain the author’s main contri-

bution to the technique: the optimizations and parallelization that allow the technique to efficiently

solve one of the largest known poker abstractions. In Section 3.5, we will compare the poker strate-

gies produced by this technique to several benchmark programs. Finally, in Section 3.6 we will

summarize the technique and reconsider the advantages and disadvantages of ε-Nash equilibrium

strategies.

3.2 Overview

We first encountered the concept of regret in Section 2.7.2, in our description of the UCB1 algo-

rithm for choosing the best agent from a team of poker players. Informally, regret is similar to the

economics concept of an opportunity cost — if you take some action a and receive utility u(a)

when you could have taken a utility maximizing action a∗ to receive utility u(a∗), then your regret

is the difference u(a∗)− u(a).

In the CFR approach, we will construct two half-strategies, σdealer and σopponent, who will

play repeated games of poker against each other. We refer to them as “half-strategies” because each

only plays half of the game: one plays from the dealer’s perspective, and the other plays from the

opponent’s perspective. They will start the match with an arbitrary set of action probabilities, such

as folding, calling and raising from all information sets with equal probability. After each hand, the

half-strategies will adjust their play to minimize their regret. Specifically, at each information set,

we will establish a regret minimizing agent that acts so as to minimize the regret of its own subtree,

given the opponent’s current strategy.

As the number of training games played by the pair of half-strategies increases, their regret

minimizing behavior will cause them to approach a Nash equilibrium in the abstract game. At any

point, we can combine the half-strategies into a full strategy and measure their progress towards this

goal by considering the best response. As the number of training games increases, the utility of the

best response to the strategy falls. In Section 3.5, we will present experimental results that show the

rate at which the strategy’s exploitability decreases. The improvement in play is dramatic at first,

and eventually succumbs to diminishing returns, where each additional hand results in only a small

improvement. By graphing the improvement in play in several different sizes of abstractions, we

also show that the number of iterations needed to reach a certain level of exploitability is depends

linearly on the number of information sets.

The benefits of this approach are as follows:

• Lower memory requirements. Since CFR requires memory linear in the number of infor-

mation sets, it requires fewer resources than traditional linear programming methods.
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• Parallel computation. In Section 3.4.3, we will present a method for parallelizing the algo-

rithm so that more computers to be used. This improves the speed of the program and also

uses more memory distributed across multiple machines, allowing us to solve larger abstract

games.

3.3 Formal Description

3.3.1 ε-Nash Equilibria, Overall Regret, and Average Strategies

In this section, we will explain how we can approach a Nash equilibrium through regret minimiza-

tion. We will start by considering what it means to measure our regret when we pick a strategy to

play a game like poker. Player i plays T games of poker and their strategy σt
i ∈ Σi is the strategy

they use on game t. Then, the average overall regret of player i over this series of T games is:

RT
i =

1
T

max
σ∗i ∈Σi

T∑
t=1

(
ui(σ∗i , σt

−i)− ui(σt)
)

(3.1)

The player’s average overall regret is thus the average of the differences in utility between the strate-

gies chosen for each game, and the single strategy that would have maximized utility over all T

games.

We can also define the average strategy used by player i used during this series of games. For

each information set I ∈ Ii, for each action a ∈ A(I), we define the average strategy as:

σ̄T
i (I)(a) =

∑T
t=1 πσt

i (I)σt(I)(a)∑T
t=1 πσt

i (I)
. (3.2)

Thus, the average strategy defines its action probabilities for each information set to be the action

probabilities of each strategy, weighted by the probability of the strategy reaching that information

set.

In [36, Theorem 2], Zinkevich states the following well known theorem that links the concepts

of the average strategy, overall regret, and ε-Nash equilibria:

Theorem 3 In a zero-sum game at time T, if both players’ average overall regret is less than ε, then

σ̄T is a 2ε equilibrium.

Let us now consider the sequence of strategies that each player selects over the T games. If both

players are learning over the course of these games such that their average overall regret approaches

0 as t goes to infinity, then their average strategies approach a Nash equilibrium. What is needed,

then, is a regret minimizing algorithm for selecting σt
i . Such an algorithm can then be used in

self-play over a series of games to approach an ε-Nash equilibrium. After any number of games, we

can find the value of ε by measuring the average overall regret for all players, or by calculating a best

response to the strategy profile σ. Additionally, if our regret minimizing algorithm provides bounds

on the average overall regret, then it also bounds the rate of convergence to the Nash equilibrium.
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3.3.2 Counterfactual Regret

We will propose a new regret minimization algorithm for selecting the sequence of strategies. In-

stead of trying to minimize one regret value for an entire game, we will instead decompose our

regret minimization task into several small scenarios where we can minimize regret independently.

We call these independent regret values counterfactual regret, and we will minimize the counter-

factual regret values encountered at every information set. The sum of our counterfactual regret

forms a bound on the overall regret; by minimizing our counterfactual regret, we thus minimize our

overall regret, and approach a Nash equilibria.

We will start by considering the utility for a player to reach a certain information set, and the

utility resulting from each action they can take from that information set. Let us define ui(σ, h) as

the expected utility for player i if the players reach history h and then play according to strategy

profile σ. We define counterfactual utility ui(σ, I) to be the expected utility given that information

set I is reached and all players play using strategy profile σ except that player i plays to reach I .

Recall that our notation for the probability of reaching a particular information set I , given that

player i is trying to do so, is πσ
−i(I). We call this “counterfactual” utility because it is the value to

player i of reaching information set I if the player had tried to do so .

We need to define one final term in order to consider strategies that diverge only at the actions

the player is considering at one information set. Define σ|I→a to be a strategy profile identical

to σ, except that player i will choose to take action a whenever I is reached. We can now define

immediate counterfactual regret to be a player’s average regret for their actions at I , if they had

tried to reach it:

RT
i,imm(I) =

1
T

max
a∈A(I)

T∑
t=1

πσt

−i(I)
(
ui(σt|I→a, I)− ui(σt, I)

)
(3.3)

In this equation, a is selected as the maximum utility action to take in I over the T samples;

ui(σt|I→a) is the utility for player i of all players playing according to σt, except for i select-

ing action a at I . We subtract the utility ui(σt, I) to find our regret. To find our immediate

counterfactual regret, we weight this utility with the probability that the other players play ac-

cording to σt. We need only to minimize the positive portion of the regret, and so we define

RT,+
i,imm(I) = max(RT

i,imm(I), 0).

With this background established, we can now present our first key result:

Theorem 4 RT
i ≤

∑
I∈Ii

RT,+
i,imm(I)

Theorem 4 states that average overall regret is bounded by the sum of the independent immedi-

ate counterfactual regret values. Through Theorem 3, we then find that by minimizing immediate

counterfactual regret, our strategy profile σ approaches a Nash equilibrium. All that remains is to

provide a strategy for minimizing immediate counterfactual regret at each information set.
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3.3.3 Minimizing Immediate Counterfactual Regret

In this section, we will show how counterfactual regret can be used to set the action probabilities of a

strategy, in order to minimize counterfactual regret on future iterations. With this accomplished, we

will have completed our task — by finding a player’s counterfactual regret and updating its action

probabilities according to two equations, we will have specified a system for using self-play to find

ε-Nash equilibria.

In Equation 3.3, we stated that our immediate counterfactual regret was a consequence of our

choice of actions at that information set. In that equation, we considered our regret to be the differ-

ence in utility between the actions taken by our strategy σi, and the single action that would have

maximized our utility for all examples of that information set, weighted by the probability of reach-

ing that information set on iteration t, if we had tried to reach that information set. Now, we will

instead measure our regret for not taking each possible action. Associated with each action in each

information set, we will maintain the following regret value:

RT
i,imm(I, a) =

1
T

T∑
t=1

πσt

−i(I)
(
ui(σt|I→a, I)− ui(σt, I)

)
(3.4)

These RT
i (I, a) values tell us, over T samples, how much we regret not folding, calling, or

raising instead of taking the actions specified by σi. As we are concerned with positive regret, we

define RT,+
i (I, a) = max(RT

i (I, a), 0). Then, to determine the new strategy to use at time T + 1,

we set the action probabilities as follows:

σT+1
i (I)(a) =


RT,+

i (I,a)P
a∈A(I) RT,+

i (I,a)
if

∑
a∈A(I) RT,+

i (I, a) > 0
1

|A(I)| otherwise.
(3.5)

The relationship between positive counterfactual regret and the new strategy’s action probabili-

ties is simple. Each action is selected in proportion to the accumulated positive counterfactual regret

we have had for not selecting that action in the past. In information states where there is no positive

regret, we set the action probabilities to a default setting — in this case, equal probability to each

action.

3.3.4 Counterfactual Regret Minimization Example

The above formal description of minimizing counterfactual regret may appear complex, but the

computation is actually straightforward. We will now present a short example of how counterfactual

regret is minimized at one choice node.

First, it is important to recognize that when the algorithm is calculating the counterfactual regret

and adjusting the action probabilities for both strategies, a game is not actually being played. In-

stead, the algorithm has one strategy for each player, and it knows the details of those strategies. The

algorithm can calculate the expected value for each of a player’s actions by simulating the remainder
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of the game with those strategies and the possible chance outcomes that can occur. If one takes the

perspective of the strategy and not the algorithm, this appears impossible — how can the strategy

calculate the expected value, since it does not know its opponent’s action probabilities? This mis-

conception is common, and it is important to remember that it is the algorithm that uses its perfect

information to calculate regret and adjust the action probabilities.

For our first example, we will refer to Figure 3.1. The algorithm starts by initializing both

strategies to a uniform distribution: at each choice node, the strategies for player 1 and 2 will fold,

call, and raise with equal probability. In this example, we will consider the actions taken by a

player at one of the many information sets. This information set occurs near the start of the game.

Each player has received cards, and the player’s cards are in bucket 3 of 5 (a moderate hand). The

opponent has just made their first action: a bet. With their cards, according to their strategy, they

would have placed this bet half of the time.

By examining the game tree following each action and using the two players’ strategies, we can

find the expected value of each action for the player. In this example, we find that the expected

value for folding, calling and raising is -3, 6, and 9, respectively. The player’s action probabilities

(1/3, 1/3, 1/3) are given beside the name of each action. We can now find the current expected

value for this player at this choice node, given the players’ strategies and the chance outcomes:

−3 ∗ 1/3 + 6 ∗ 1/3 + 9 ∗ 1/3 = 4.

Next, we calculate the regret for each action. Recall that regret is the difference in expected value

between always taking an action and the expected value of the strategy. For example, the regret for

folding is (−3 − 4 = −7). The regret for calling and raising is 2 and 5, respectively. If we use the

usual English meaning of regret, we could say that we “regret” not calling or raising more often, and

that we “regret” folding as much as we did.

As mentioned previously, counterfactual regret is regret weighted by the opponent’s probability

of reaching this information set. In this example, the opponent had a 0.5 probability of betting,

and so we weight the regret for each action by 0.5, giving the player counterfactual regrets of (-3.5,

1, 2.5). We will keep track of the accumulated counterfactual regret from every time we visit this

information set.

Finally, we assign new action probabilities at this information set proportional to the positive

accumulated counterfactual regret. This means that there is no probability of folding (because the

fold counterfactual regret is negative), a (1/2.5 ≈ 0.3) probability of calling, and a (2.5/3.5 ≈ 0.7)

probability of raising. On future visits to this information set, such as in the next example, this

probability will be used.

To show the importance of weighting the regret by the probability of the opponent’s actions, we

will present a second example in Figure 3.2. In the first example, the player likely had a stronger

hand than the opponent: they won if the called or raised. In this example, the opponent has a stronger

hand. This results in a negative expected value for each action, and they also bet with probability 1.
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As in the first example, we calculate the expected value for each action (-3, -6, -9), and using the

probabilities chosen earlier, we find the expected value of the new strategy to be −8.1. The regret

for each action is (5.1, 2.1, -0.9). This means that we “regret” not folding or calling more often in

this game state.

To find counterfactual regret, we weight the regret by the opponent’s probability of reaching this

information set. In this example, this probability is 1. The effect of this weighting is that it places

more weight on regrets that are likely to occur. The regrets incurred in this second example are given

twice the importance as the regrets incurred in the first example, as this situation is more likely to

occur.

By adding the counterfactual regret from this example to that of the first example, we arrive

at an accumulated counterfactual regret of (1.6, 3.1, 1.6). We then assign new action probabilities

proportional to this accumulated counterfactual regret: (1.6/6.3 ≈ 0.25, 3.1/6.3 ≈ 0.5, 1.6/6.3 ≈

0.25). This set of action probabilities will be used on future visits to this information set.

These two examples demonstrate how, over time, the action probabilities at each information set

are changed to minimize the counterfactual regret caused by any of the game states in the information

set.

3.3.5 Bounds on Regret

Theorem 5 If player i selects actions according to Equation 3.5 then RT
i,imm(I) ≤ ∆u,i

√
|Ai|/

√
T

and consequently RT
i ≤ ∆u,i|Ii|

√
|Ai|/

√
T where |Ai| = maxh:P (h)=i |A(h)|.

The range of utilities (∆u,i), the maximum number of actions (
√
|Ai|), and the number of infor-

mation sets (|Ii|) are constants; as the number of iterations (
√

T ) is in the denominator, Theorem 5

shows that average overall regret decreases as we increase the number of iterations. With this result,

we conclude that by updating our probabilities according to Equation 3.5, we can use self-play to

approach a Nash equilibrium. We also note that the theorem tells us that the average overall regret

grows linearly with the number of information sets, and the number of iterations required grows

quadratically with the number of information sets.

In the next section, we will explain how we have applied this technique to Texas Hold’em.

3.4 Applying Counterfactual Regret Minimization to Poker

In this section, we will describe the details of applying this technique to the game of Limit Heads-

Up Texas Hold’em. We will start in Section 3.4.1 by describing a general implementation of the

algorithm described above in Section 3.3. In Section 3.4.2, we will describe the poker specific

program we use, which takes advantage of features of the game to more quickly approach a Nash

equilibrium. Then, in Section 3.4.3, we will discuss optimizations made by the author to enable
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Figure 3.1: The first example of counterfactual regret minimization at a choice node. See Sec-
tion 3.3.4 for an explanation.
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Figure 3.2: The second example of counterfactual regret minimization at a choice node. See Sec-
tion 3.3.4 for an explanation.
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this poker specific program to solve poker abstractions two orders of magnitude larger than had

previously been achieved.

3.4.1 General Implementation

To implement this program to solve general extensive form games, we first create an information

set tree for each player. This tree represents the game as viewed by one player; each information

set from the extensive form game tree is represented by a choice node in the information set tree.

At each choice node in the information set tree, we will track the accumulated counterfactual regret

RT
i (I, a) for each action, and the action probabilities for that player’s strategy. We initialize the

strategy to a default setting, and then begin playing a series of games between the two players. We

will refer to each game as one iteration.

Equation 3.4 and Equation 3.5 are the two key functions of the program for implementing this

algorithm. On each iteration, for each player, we walk over the extensive form game tree. Note that

the extensive form game tree does not have to be stored in memory, as we only have to visit each

of its states. At each choice node for a player, we use Equation 3.4 to calculate the regret for each

action, and we add this to the accumulated counterfactual regret associated in the corresponding

node of the player’s information set tree. Then, we walk each player’s information set tree, and use

Equation 3.5 to update the action probabilities at each choice node. Since each iteration walks the

entire extensive form game tree, every iteration is considering all of the possible chance outcomes

for the players.

Since this approach requires only that we walk the extensive form game tree but not store it, our

memory requirements are only the two information set trees. Using this general approach, as we

increase the number of iterations, the average strategies stored in the two information set trees will

approach a Nash equilibrium.

In Section 3.3.5, we stated the number of iterations needed grows quadratically with the number

of information sets. In poker, this bound can be made even tighter, as described in the technical

report [35, Equation 25]. When using the general implementation for poker, the number of iterations

relies on the number of betting sequences, but does not depend on the size of the card abstraction:

if we were to double the size of our card abstraction, we only have to perform the same number of

iterations to reach the same distance from a Nash equilibrium. However, since each iteration visits

every game state, the time cost per iteration does increase.

3.4.2 Poker Specific Implementation

The game of poker has far more game states than information sets. This is because of the private

information that our opponent holds; in the real game, there are 2,450 card combinations (169 after

removing isomorphisms) that they could be holding. In an abstraction that has 5 buckets on each

round, there are 5 game states for every Preflop information set; on the Flop there are 25, 125 on
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the Turn and 625 on the River. Since a strategy must use the same actions in each game state in

an information set, it may not be necessary to consider all of the game states to choose one action

distribution for the information set, if instead we consider a representative sample of the game states.

In the general implementation described earlier, each iteration involved considering all possi-

ble private card holdings for both players. In our poker specific implementation, we will randomly

sample a hand for each player and the board cards, and then walk only the portion of the extensive

form game tree where those chance outcomes occur. In our abstractions of poker, we refer to this

sequence of private and public cards as a joint bucket sequence. Another perspective on this differ-

ence between the general and poker specific implementation is that in the general implementation,

the chance player plays according to a mixed strategy, where all chance outcomes are possible. In

the poker-specific implementation, the chance player plays a pure strategy, where only one outcome

is possible at each chance node, and this pure strategy changes on each iteration. For each iteration,

a large part of the extensive form game tree is now unreachable, because the chance player’s actions

only allow for 18,496 states and 6,378 information sets to be reached. On each iteration, only one

game state in each reachable information state is considered; over time, by visiting a sample of the

states in each information set, the strategy’s actions become increasingly suited for all of the game

states in the set. In Section 3.5, we will present experimental results that show that this poker spe-

cific implementation causes a quadratic decrease in the number of states visited per iteration, and

only causes a linear increase in the required number of iterations.

3.4.3 Optimizations

Part of the author’s contribution to this work was to develop a fast, memory efficient implementation

of the algorithm. In this section, we will briefly touch on the speed and memory optimizations

performed, and describe how the algorithm can be parallelized.

Speed and Memory improvements

Since the strategy profile converges to a Nash equilibrium based on the number of iterations, it is

important to traverse the game trees as efficiently as possible. It is possible to perform cutoffs at

some points during the tree traversal, to avoid updating the regret values if the probability of an

opponent reaching a particular history becomes 0. In practice, this is a very significant savings: if

the opponent never raises with a weak hand in the Preflop, then we can avoid traversing large parts

of the tree.

A careful implementation can also yield a large decrease in the memory requirements of the pro-

gram. By designing our data structure to use as little memory as possible per node in the information

set tree, we can make more memory available to solve larger abstractions. One “trick” of particular

use in poker was to eliminate the terminal nodes from the tree. In our original implementation, every

terminal node in the tree stored the amount of money in the pot (the utility for the game’s winner).
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Due to the branching nature of trees, there are more terminal nodes than any other type of node.

However, since Limit Heads-Up Texas Hold’em can only end in very few ways (between 1.5 and

24 small bets in the pot, for a limited number of showdowns or folds), we created only 138 unique

terminal nodes and structured our tree to avoid duplication.

Parallel Implementation

To compute our CFR poker agents, we used a cluster of computers where each node has 4 CPUs and

8 gigabytes of RAM, connected by a fast network. However, any one node did not have enough main

memory to store both the details of a 10-bucket abstraction and the two information set trees required

to compute a strategy profile. Our original goal in designing a parallel version of the program was

to store parts of the game tree on different computers to make use of distributed memory. While

meeting that requirement, we found that the algorithm is easily modified to allow parallel traversals

of the game trees when updating the counterfactual regret and action probabilities.

We start with the observation that Limit Hold’em has seven Preflop betting sequences that con-

tinue to the Flop (i.e. betting sequences without folds): check-call, check-bet-call, check-bet-raise-

call, check-bet-raise-raise-call, bet-call, bet-raise-call, and bet-raise-raise-call. After one of these

Preflop betting sequences, to perform the recursive regret and probability updates, we only require

the portion of both players’ game trees that started with that Preflop betting sequence.

We use a client/server layout for our parallel approach. The server holds the details of the

card abstraction and only the Preflop portion of both players’ information set trees. On each of

seven additional computers, we store the portion of both players’ game trees that start with one of

the Preflop betting sequences. At the start of each iteration, the server generates N joint bucket

sequences, performs the update functions on its part of the game tree, and then contacts each of

the clients. Each client is given the bucket sequences and the probability that each player would

play that Preflop betting sequence, given the Preflop bucket. With this information, for each bucket

sequence, the clients can run their update functions in parallel and contact the server when they are

finished.

In theory, this algorithm is almost embarrassingly parallelizable. The server does a very fast

iteration over its small Preflop game tree, and then contacts the clients with a short message over a

fast network. Each of the clients then does the time consuming part of the task in parallel, with no

need for communication between peers, or even with the server until the task is complete.

In practice, we get a sublinear speedup: 3.5x when using 8 CPUs, instead of the 7x speedup that

we might expect2. This is because not all of the Preflop betting sequences are equally likely. For

example, the check-bet-raise-raise-call sequence indicates that both players have a strong hand, and

are willing to repeatedly bet before seeing the Flop cards. The probability of both players following

this betting sequence with a moderate hand may be zero, in which case the computation is pruned.

2The highest speedup we would expect is 7x instead of 8x, since the server is idle while the clients are working
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This means that the computer reserved for handling this betting sequence is not used to capacity.

The computers responsible for the check-call, check-bet-call, and bet-call betting sequences are the

bottlenecks as these betting sequences are likely to occur with most of the possible deals.

Even with this load balancing issue, however, the parallel version of the program is of consid-

erable use. It satisfies the main goal of increasing the available memory by giving us access to 64

gigabytes of RAM across 8 computers. Using this parallel version, we have solved games with as

many as 12 buckets on each round to within 2 millibets/game of a Nash equilibrium.

3.5 Experimental Results

In this section, we will present results that show the effectiveness of this technique as applied to

Texas Hold’em. We will start by examining how quickly the algorithm approaches a Nash equi-

librium in a variety of abstractions. Then, we will use the strategies generated by this method to

play Texas Hold’em against the two best poker agents that the CPRG has previously produced, and

will show that increasing the size of our abstraction consistently leads to better play. Finally, we

will consider the 2006 AAAI Computer Poker Competition, and show that if one of our new ε-Nash

equilibria agents had been submitted to that competition, it would have won by a large margin.

3.5.1 Convergence to a Nash Equilibrium

Using the Counterfactual Regret Minimization technique, we found ε-Nash equilibria for abstrac-

tions with 5, 6, 8, and 10 buckets per round. In Figure 3.3 (a), we show the size of each abstraction

in game states, the number of iterations of the algorithm we performed, the time taken to run the

program, and the exploitability of the resulting strategy. We also note here that since we are using

the poker specific implementation where bucket sequences are sampled, the time taken per iteration

is affected by the size of the abstraction only insofar as technical details such as memory locality are

concerned.

In Figure 3.3 (b), we show a graph of the convergence rates of strategies in the 5, 8, and 10

bucket abstractions. The y-axis shows the exploitability of the strategy, while the x-axis shows the

number of iterations performed, normalized by the number of information sets in the abstraction. By

dividing by the number of information sets, we show that the convergence rates are nearly identical,

thus showing that in practice, the number of iterations needed to find an ε-Nash equilibrium grows

linearly in the number of information sets. To find ε-Nash equilibrium strategies in a new abstraction,

we can use this result to estimate how many iterations (and thus how much time) will be required.

The 10-bucket abstraction presented in this figure was one of the poker agents the CPRG sub-

mitted to the 2007 AAAI Computer Poker Competition. To produce this agent, the algorithm was

run for 2 billion iterations over 14 days, using the parallel implementation and 4 CPUs. The result-

ing strategy was 2.2 mb/g exploitable in its own abstraction. The algorithm converges very quickly,

though. After only 200 million iterations (10% of the total computation time, which required 2
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Abs Size (game states) Iterations Time Exp
(×109) (×106) (h) (mb/h)

5 6.45 100 33 3.4
6 27.7 200 75 3.1
8 276 750 261 2.7
10 1646 2000 326† 2.2
†: parallel implementation with 4 CPUs

(a)
 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12  14  16  18

E
xp

lo
ita

bi
lit

y 
(m

b/
h)

Iterations in thousands, divided by the number of information sets

CFR5
CFR8

CFR10

(b)

Figure 3.3: (a) Number of game states, number of iterations, computation time, and exploitability
(in its own abstract game) of the resulting strategy for different sized abstractions. (b) Convergence
rates for three different sized abstractions. The x-axis shows the number of iterations divided by the
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PsOpti4 Smallbot2298 CFR5 CFR6 CFR8 CFR10 Average
PsOpti4 0 -28 -36 -40 -52 -55 -35

Smallbot2298 28 0 -17 -24 -30 -36 -13
CFR5 36 17 0 -5 -13 -20 2
CFR6 40 24 5 0 -9 -14 7
CFR8 52 30 13 9 0 -6 16

CFR10 55 36 20 14 6 0 22
Max 55 36 20 14 6 0

Table 3.1: A crosstable showing the performance of several ε-Nash equilibrium strategies. Winnings
are in millibets/game for the row player in full Texas Hold’em. Matches with PsOpti4 used 10
duplicate matches of 10,000 hands each and are significant to 20 mb/g. Other matches used 10
duplicate matches of 500,000 hands each are are significant to 2 mb/g.

days), it was already less than 13 mb/g exploitable. Recall that, due to our poker specific imple-

mentation, only 18,496 game states are visited per iteration. After 200 million iterations, each game

state had been visited less than 2.5 times on average. The fact that the algorithm had already found

a robust strategy with many observations of each information set but so few observations of each

game state lends support to our claim that we can find appropriate actions in each information set by

observing repeated samples of game states in that information set.

3.5.2 Comparison to existing programs

In this section, we will use the poker agents produced by the Counterfactual Regret Minimization

technique to play games of Texas Hold’em against the strongest available poker programs. We will

start by competing against the two strongest poker agents the CPRG has produced, and will evaluate
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Hyperborean Bluffbot Monash Teddy Average
Smallbot2298 61 113 695 474 336

CFR8 106 170 746 517 385

Table 3.2: Crosstable showing the performance of a Counterfactual Regret Minimization ε-Nash
equilibrium agent and a recently published equilibrium strategy against the competitors of the 2006
AAAI Computer Poker Competition Online Learning event. Winnings are in mb/g for the row player
in full Texas Hold’em.

our claim that an increase in the abstraction size generally leads to an increase in performance.

Table 3.1 shows the results of this experiment. PsOpti4 and Smallbot2298 are the two strongest

ε-Nash equilibria strategies that the CPRG has produced by older techniques. In these results, we

show that a CFR strategy from our smallest (5 bucket) abstraction is able to defeat both of them. As

we increase the size of the abstraction to 6, 8, and 10 buckets, we find that our performance against

PsOpti4 and Smallbot2298 and smaller CFR strategies increases with each step.

Next, we will use one of our poker agents to recreate the 2006 AAAI Computer Poker Com-

petition, and show that if it had been entered, it would have won. Table 3.2 shows a comparison

between the 8-bucket CFR strategy from Figure 3.1, competing against the four competitors from

the 2006 AAAI Computer Poker Competition’s Online Learning event. In the paper that describes

the technique that generated Smallbot2298, the analogous experiment was performed [34, p. 792];

for comparison, we have reproduced those results in this table. CFR8 defeats Smallbot2298 and all

of the competitors from the competition, and also wins by a larger margin against each than Small-

bot2298. From this result, we conclude that if CFR8 had been entered into the competition, with or

without Smallbot2298 also being entered, CFR8 would have won by a substantial margin.

3.6 Conclusion

In this chapter, we presented a new technique for finding ε-Nash equilibria strategies in large ab-

stract games, such as our abstractions of Texas Hold’em poker. We showed that, by solving larger

equilibria than were previously possible, we have been able to produce new equilibrium strategies

that have defeated all other known poker agents. In Chapter 7, we will show additional results of

these agents being used to compete in the 2007 AAAI Computer Poker Competition and the First

Man-Machine Poker Championship.

In poker, however, it is not sufficient merely to not lose to each of your opponents. As we

mentioned in Section 1, one of the important features of poker is that exploitation is important. A

strategy that never loses but does not win by as much as possible can lose a tournament to a player

that occasionally loses, but wins by a large margin when it wins. The game RoShamBo (also known

as Rock-Paper-Scissors) has been used to demonstrate this effect [6, p. 25]. In RoShamBo, the

equilibrium strategy is trivially found and used by humans: simply randomly select each action 1/3
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of the time. However, the equilibrium strategy has an expected value of 0 against any opponent. In

the International RoShamBo Programming Competition, several exploitable strategies are entered

by the tournament organizer; exploitative strategies win against them, while the equilibrium cannot,

and thus has no chance of winning the tournament.

In poker, we can learn this lesson from RoShamBo. The CFR ε-Nash equilibria strategies can

win a competition which ranks players based on the number of matches they won, but may not win

when the competition is ranked by the players’ total winnings. We need to consider how much it is

possible to defeat an opponent by, and measure how much of that exploitability our CFR strategies

are achieving. Equilibrium strategies are useful tools, but to win the game instead of not lose it, we

may need to explore other strategies that are capable of stepping away from the equilibrium point in

order to try to exploit an opponent.
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Chapter 4

Playing to Win:
Frequentist Best Response

4.1 Introduction

A best response to a strategy σopp is the strategy that maximally exploits σopp. Knowing this strategy

and the utility of using it against σopp confers several advantages. For example, if σopp is an ε-Nash

equilibrium strategy, the utility tells us how far σopp is from a Nash equilibrium. If we are trying to

use another strategy to defeat σopp, comparing that strategy’s utility to the utility of the best response

tells us how much of the possible exploitation we are achieving.

In Texas Hold’em, calculating a best response in the “real”, unabstracted game is very compu-

tationally expensive, so we are forced to compromise by calculating a best response in the same

abstract game that the strategy uses. The resulting counter-strategy may not be able to exploit σopp

by as much as a best response in the real game can. For this reason, a best response in an abstract

game can be called a “good response” to σopp, as opposed to the “best” response in the real game.

However, we will use the more precise term abstract game best response, to indicate the strategy

within a certain abstraction that is the best response to σopp. These abstract game best responses

are still valuable, as they give us a lower bound on the exploitability of σopp; we know that the best

response can achieve at least the same utility against σopp as the abstract game best response.

However, the abstract game best response algorithm has three drawbacks. The first is that it

requires knowledge of the abstraction in which σopp plays. The second is that it requires the strategy

σopp itself: to calculate a best response, we need to know how σopp will act in every information

set. The third is that the resulting abstract game best response must be constructed in the same

abstraction that σopp plays in.

In this chapter, we will present a technique called Frequentist Best Response (FBR) that ad-

dresses these three drawbacks of the abstract game best response algorithm. In Section 4.2, we will

formally define the abstract game best response algorithm. In Section 4.3, we will present and for-

mally define the FBR algorithm. In Section 4.5, we will show results of FBR’s effectiveness against

54



the CPRG’s benchmark programs, and compare it to the opponent modeling agent BRPlayer. Fi-

nally, in Section 4.6, we will describe the strengths and weaknesses of the resulting FBR strategies,

and motivate our next technique, which allows us to quickly find ε-Nash equilibria in large abstract

games.

4.2 Best Response

Computing a best response to a strategy is a well-known procedure using the tools of game theory.

However, as mentioned above, computing a best response to a strategy in the unabstracted game

of Texas Hold’em is not feasible, due to memory limitations and the computation time required.

Therefore, as described in Section 2.6.3, we are forced to compute the best response to a σopp

inside of the same abstract game that σopp uses. This abstract game best response is the strategy

in the abstract game that maximally exploits σopp. Through experiments, we have found that these

abstract game best responses are still “good” responses in the real game of poker when used against

the strategies they are designed to defeat.

Formally, consider an abstract game A, and let ΣA be the set of possible strategies in A. Given

one such strategy σ ∈ ΣA, we define the best response to σopp as a strategy σBR(opp) ∈ ΣA

that has the maximum expected value of any strategy in ΣA when played against σopp. We can

compute the best response as described in Algorithm 1. Briefly, we do this by recursing over all

of σBR(opp)’s information sets. For each game state in the information set, we find the probability

of σopp reaching every terminal node descendant from that game state, and the associated utility

of both players reaching that terminal node. We then find the expected utility for each action, and

select the single action for σBR(opp) that maximizes this utility.

Abstract game best response strategies have three drawbacks:

• Requires the abstraction. To compute a best response to σopp, we need to know every-

thing about the abstraction that σopp plays in: the buckets, the transition probabilities, and the

utilities.

• Requires the strategy. We need to know the action probability distribution of σopp for every

information set.

• Counter-strategies share the abstraction. The best response strategy we generate plays in

the same abstract game as σopp.

In the following section, we will describe Frequentist Best Response, a variant on the best re-

sponse algorithm that avoids or lessens each of these drawbacks.
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Algorithm 1 BESTRESPONSE(A, I, S)
Require: An abstraction of the game A
Require: A node I of the information set tree for game A
Require: A strategy σopp, being a mapping from information sets to action probabilities
Ensure: A strategy BR(σ), being a mapping from information sets to action probabilities
Ensure: An expected utility u(BR(σ), σ), being the expected utility of using strategy BR(σ)

against strategy σopp.
1: if I is a terminal node then
2: Let uI be the utility of reaching information set I .
3: Let p be Πσ(g), the probability of σopp reaching game state g ∈ I
4: Let ug be the utility of reaching game state g ∈ I .

5: uI = 1P
g∈I p

(∑
g∈I pug

)
6: Return uI

7: else if I is a choice node for BR(σ) then
8: Let I(a) be the information set resulting from taking action a in information set I
9: Find the action a that maximizes u(a) = BESTRESPONSE(A, I(a), σ)

10: Set BR(σ)(I) to select action a
11: Return ua

12: else if I is a choice node for σopp then
13: for Each action a available in I do
14: Let I(a) be the information set resulting from taking action a in information set I
15: BESTRESPONSE(A, I(a), σ)
16: end for
17: end if

4.3 Frequentist Best Response

There are several situations where the abstract game best response algorithm is not suitable. Two

examples are:

• Calculating the abstract game best response to a competitor’s black box strategy. By a

“black box strategy”, we refer to a program which you can play poker against, but not examine

to directly find its action probability distribution at each information set. If you are playing in

a competition such as the annual AAAI Computer Poker Competition, you may be curious to

know how exploitable an opponent’s previous year’s entry was. However, since you cannot

examine the strategy to find the action probabilities, the abstract game best response algorithm

cannot be used.

• Calculating exploitability in a more informed game. If you have created a strategy σopp

in some abstraction A, you can use the abstract game best response algorithm to find its ex-

ploitability. However, if you create a new abstraction A′, you may wonder how exploitable

σopp is by strategies that play in A′. Since the abstract game best response algorithm can only

create strategies that play in the same abstraction, it is not suitable for this task. This is partic-

ularly useful if σopp is an ε-Nash equilibrium strategy, since σopp is minimally exploitable in

its own abstraction, but may still be vulnerable in other abstractions.
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Our approach for avoiding the drawbacks of best response is called Frequentist Best Response

(FBR), and it was first described in [14]. It is an offline approach that requires the ability to play

against an opponent strategy, without requiring direct access to the action probabilities that the

strategy contains. In the remainder of this section, we will describe the approach, and highlight four

parameters that affect the quality of the counter-strategies that it produces. In Section 4.4, we will

present experimental results of the effects of these parameters, and justify the settings we use in

FBR.

We will now begin our description of the FBR algorithm. For an opponent strategy σopp, we will

observe many full information examples of σopp playing the unabstracted game of poker. Using this

information, we will use frequency counts of its actions to form an opponent model in our choice

of abstract game. Then, we will use the best response algorithm in Algorithm 1 to calculate a good

response counter-strategy to the opponent model. We will then evaluate the technique by using the

counter-strategy to play against σopp in the real game. We will now describe each step of this process

in more detail, and point out the choices that affect FBR’s performance.

4.3.1 Obtaining the training data

The first step of the process is obtaining a large set of example games of σopp playing the unab-

stracted game of poker with full information. By “full information”, we mean that we need to see

all private and public cards for every game, even in cases where one player folds. This technique

will require a large number of example games, and more example games are needed as we increase

the size of the abstraction we wish to use. For our smallest abstraction (5 buckets per round), we

require between 100,000 and 1 million training games. For larger abstractions (such as 8 buckets per

round), more games are required. For the technique to work well, we need to observe σopp playing

in a wide variety of situations. This means that the type of opponent that σopp is playing against

in the training data is also important. The “training opponent” for σopp should evenly explore the

different lines of play that σopp can reach.

Parameter 1: Collecting enough training data

As we use more training data to create our opponent model, the accuracy of the model and the

performance of the FBR counter-strategy against σopp improves. There are diminishing returns,

however, since there is a bound on how exploitable σopp is by any strategy in the abstraction. Our

first decision to make, then, is to choose how much training data to generate and use.

Parameter 2: Choosing an opponent for σopp

Earlier, we mentioned that the choice of opponent that we observe σopp playing against for these

training games is significant. Let us call this opponent σtrain. For FBR to work well, we need

to observe σopp acting several times in every reachable information set of the abstraction we will
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choose later. If we accomplish this, then our opponent model will be accurate and the counter-

strategy will perform well; if there are many situations in which we have never observed σopp acting,

then our counter-strategy will perform poorly.

One obvious choice for σtrain is σopp itself. We could observe games of PsOpti4 playing against

itself, for example. At first, this seems like a good option, since we would receive more observations

(and our opponent model would be more accurate) in the situations that the opponent is likely to

play in. However, there are two reasons why self-play data may not be useful as training data for

FBR. First, σtrain should never fold. If σtrain folds, then the game is over and we do not receive

any additional observations from σopp. If we use self-play games, then σtrain will fold, and we will

not receive as much information as we can. Second, if we only observe situations where σopp is

likely to reach, then we obtain no information about states that it will play into rarely. PsOpti4 is a

good example of this. PsOpti4 uses a betting abstraction, in that it only considers at most three bets

per round, instead of four. In self-play, PsOpti4 will never reach a four-bet situation. Against other

opponents, PsOpti4 will occasionally raise to three bets, and the opponent can raise to four. PsOpti4

ignores this fourth bet, and it will not count its value in the pot. This means that it is not correctly

calculating the expected value of future betting decisions. Thus, playing against other opponents

reveals weaknesses in σopp that no amount of self-play will uncover.

Instead of using self-play, σtrain should be chosen so as to force σopp to play in as many different

information sets as possible. The only way to affect the opponent’s information set is through the

betting history of the game, so it should try to choose betting actions to evenly cover the possible

betting histories. As σtrain should never fold, we need to choose a distribution over calling and

raising.

4.3.2 Creating the opponent model

The FBR opponent model is very simple. Once we have collected the data, we identify every

situation where σopp chose an action — in other words, every information set faced in every game.

For each information set, we will map the card sequence into a bucket sequence, according to the

abstract game we intend to use. The training examples we observe are played in the real game, and

σopp has used its own unknown abstraction to choose its actions, but we will instead try to replace

this with our own abstraction.

For each information set in our abstract game, we will maintain a set of counters that track the

number of times we have observed σopp fold, call and raise from that information set. We will iterate

over the abstracted choice nodes from the training data, and increment these counters according to

the actions that σopp took. Then, our model of the opponent will set the probability of taking action

a from information set I to be the number of observations of a from I , divided by the number of

observations of I . Thus, the model amounts to frequency counts in our chosen abstraction.

There are still two decisions to be made. What action should the model return in information
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sets where there were no observations, and what abstraction should the model and best response be

calculated in?

Parameter 3: Choosing the default policy

If we had an unlimited amount of training data, then we would have observations of σopp acting in

every information set. Since we do not have unlimited training data, we need a policy for our model

to follow in unobserved situations. We experimented with several simple choices for this default

action, by assuming that σopp will always call, raise, or mix between these options.

Parameter 4: Choosing the Abstraction

FBR can calculate a counter-strategy in any abstraction. If we use a larger (or better) abstraction,

we expect the performance of the FBR counter-strategies to improve, since the larger abstraction

gives a more precise representation of the hand strength of the counter-strategy’s cards. However,

we also expect a larger abstraction to require more training data, as there are more information sets

that require observations.

4.3.3 Finding a best response to the model

Once we have an opponent model of σopp defined in our choice of abstraction, we find an abstract

game best response to the model, using the best response algorithm described in Algorithm 1. The

result is a strategy, σFBR(opp), that plays in our chosen abstract game. σFBR(opp) can now play

against σopp in the unabstracted game. Depending on the exploitability of σopp and the quality

of the abstraction chosen for σFBR(opp), σFBR(opp) will hopefully be able to defeat σopp in the

unabstracted game.

4.4 Choosing the Parameters

In this section, we will experiment with several settings for each of the four parameters identified in

the previous section. Graphs will be provided to show how the choice of each parameter affects the

resulting FBR counter-strategies, and we will state and justify our choices for each parameter.

4.4.1 Parameter 1: Collecting Enough Training data

Figure 4.1 shows the effect that the amount of training data observed has on the resulting FBR

counter-strategies. In this graph, we have created a series of FBR counter-strategies against the

PsOpti4, Smallbot2298, and Attack80, using different amounts of training data. Against all three

opponents, increasing the amount of training data results in stronger counter-strategies. Depending

on how exploitable σopp is, we may require considerably more or less training data. Attack80 (a very

exploitable strategy) can be defeated by an FBR counter-strategy trained on 10,000 games, although
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Figure 4.1: Performance of FBR counter-strategies to PsOpti4, Smallbot2298, and Attack80, using
different amounts of training data. The x-axis is the number of training games observed, the y-axis
is the utility in millibets/game of the FBR strategy, and the error bars indicate the 95% confidence
interval of the result.

it can be defeated by a much larger margin when more data is used. Against Smallbot2298 (an

ε-Nash equilibrium strategy), the FBR counter-strategy requires 600,000 games just to break even.

For our five-bucket abstraction, we typically generate and use one million hands of training

data. If we use more training data for this abstraction, the counter-strategies do not improve by an

appreciable amount.

4.4.2 Parameter 2: Choosing An Opponent For σopp

In Figure 4.2, we present the results of several different choices for σtrain used to create FBR

counter-strategies to PsOpti4. “Probe” is a simple agent that never folds, and calls and raises equally

often. “0,3,1” is similar to Probe, except that it calls 75% and raises 25% of the time. “0,1,3” is

the opposite, raising 75% and calling 25%. “PsOpti4” indicates an FBR strategy created with self-

play data. From this experiment, we find that even a large amount of self-play data is not useful

for creating an FBR counter-strategy to PsOpti4. Instead, if we use strategies like Probe for σtrain,

FBR is able to create effective counter-strategies. Unless otherwise noted, the results presented in

this chapter will use Probe as σtrain, and we will refer to the Probe strategy as σprobe.

4.4.3 Parameter 3: Choosing the Default Policy

Figure 4.3 shows the effect that the default policy used in unobserved states has on the resulting

strategy. “0,1,0” is the normal policy that is used in FBR; in unobserved states, it always calls.
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“0,0,1” always raises, “0,1,1” calls and raises with equal probability, and “0,3,1” calls 75% and

raises 25% of the time.

From the graph, we see that the “always call” default policy consistently performs the best among

these options. As we increase the amount of training data, the default policies are used less often,

and the difference between the best and worst of the policies diminishes. Unless otherwise noted,

the results presented in this chapter will use the “always call” default policy.

4.4.4 Parameter 4: Choosing the Abstraction

Figure 4.4 shows the effect that the choice of abstraction has on the performance of the FBR counter-

strategy. In this figure, we have computed several FBR strategies for the 5 bucket E[HS] abstraction

and each of the 5, 6, and 8 bucket E[HS2] abstractions.

First, we notice that the 5 bucket E[HS2] counter-strategy outperforms the 5 bucket E[HS]

counter-strategy at all points on the curve. Both of these abstractions use percentile buckets and his-

tory, as described in Section 2.5.5. In that section, we explained that E[HS2] bucketing represented

potential better than E[HS] bucketing, and this graph shows how this representation of potential

can be used to produce stronger strategies.

Second, we notice that using the larger 6 and 8 bucket abstractions produces counter-strategies

that are better able to exploit the opponent. With 10 million games of training data, all four types

of counter-strategies have stopped improving, and are in the order we predicted: the performance of

the counter-strategy increases as the abstraction grows.
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PsOpti4 PsOpti6 Attack60 Attack80 Smallbot1239 Smallbot1399 Smallbot2298 Average
FBR 137 330 2170 1048 106 118 33 563

CFR5 36 123 93 41 70 68 17 64

Table 4.1: Results of FBR counter-strategies and an ε-Nash equilibrium strategy against a variety
of opponent programs in full Texas Hold’em, with winnings in millibets/game for the row player.
Results involving PsOpti4 or PsOpti6 used 10 duplicate matches of 10,000 games and are significant
to 20 mb/g. Other results used 10 duplicate matches of 500,000 games and are significant to 2 mb/g.

Unless otherwise noted, the results presented in this chapter will use the 5 bucket E[HS2] ab-

straction. This choice is made for practical reasons, as the 5 bucket FBR counter-strategies can be

produced faster and require a smaller amount of memory to store on disk or use in a match than the

6 or 8 bucket FBR counter-strategies. When we evaluate a new poker program, we typically use the

largest abstraction available.

4.5 Results

4.5.1 Comparisons against benchmark programs

To evaluate the FBR algorithm, we considered several of the benchmark programs described in

Section 2.3.3 and created an FBR strategy against each. To do this, we collected one million games

of training data of each strategy playing against σprobe, used the ’always call’ default action, and

chose a 5-bucket E[HS2] game abstraction with the features described in Section 2.5.5. In addition

to the benchmark programs, we also evaluated our agents against CFR5, an ε-Nash equilibrium agent

in the 5 bucket E[HS2] abstraction, created by the Counterfactual Regret Minimization technique

of Chapter 3.

In Table 4.1, we present the results of this experiment. The row labeled FBR indicates the score

in average millibets/game for the FBR counter-strategy against the opponent in each column. For

comparison, the row labeled CFR5 is an ε-Nash equilibrium program in the same abstraction as

the FBR counter-strategies. This table shows us that the CFR5 strategy is not exploiting its oppo-

nents by anywhere near the maximum that can be attained. Attack60 and Attack80, for example,

can be defeated at 2170 and 1048 millibets/game respectively, while CFR5 achieves only 93 and

41 millibets/game. This result shows the value of the FBR counter-strategies: when trained against

a particular opponent, the resulting counter-strategy gives us a lower bound on the opponent’s ex-

ploitability, and is also a powerful strategy to use during a match. This result also shows the necessity

of opponent modeling. A hypothetical strategy that can take advantage of the weak opponents could

lose to CFR5 and the strong opponents, and win a tournament based on its overall winnings.

However, an FBR counter-strategy is not this hypothetical tournament-winning strategy. in Ta-

ble 4.2, we present a full cross table of matches between the FBR counter-strategies and all of the

opponent programs. This cross table is colour coded to make the results clearer: cells that are green

indicate a win for the row player, and red indicates a loss for the row player. When we consider
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PsOpti4 PsOpti6 Attack60 Attack80 Smallbot1239 Smallbot1399 Smallbot2298 CFR5 Average
FBR-PsOpti4 137 -163 -227 -231 -106 -85 -144 -210 -129
FBR-PsOpti6 -79 330 -68 -89 -36 -23 -48 -97 -14

FBR-Attack60 -442 -499 2170 -701 -359 -305 -377 -620 -142
FBR-Attack80 -312 -281 -557 1048 -251 -231 -266 -331 -148

FBR-Smallbot1239 -20 105 -89 -42 106 91 -32 -87 3
FBR-Smallbot1399 -43 38 -48 -77 75 118 -46 -109 -11
FBR-Smallbot2298 -39 51 -50 -26 42 50 33 -41 2

CFR5 36 123 93 41 70 68 17 0 56
Max 137 330 2170 1048 106 118 33 0

Table 4.2: Results of frequentist best responses (FBR) against their intended opponents and against
other opponent programs, with winnings in millibets/game for the row player. Results involving
PsOpti4 or PsOpti6 used 10 duplicate matches of 10,000 hands and are significant to 20 mb/g.
Other results used 10 duplicate matches of 500,000 hands and are significant to 2 mb/g.

the cross table, we notice that the diagonal from top left to bottom right is where the FBR counter-

strategies are playing against the opponents they were designed to defeat. These scores are the same

as those in Table 4.1, and they are all positive.

The rest of the table is not nearly as promising; most of the other entries indicate that the FBR

counter-strategy lost, and sometimes by a large margin. This indicates that the FBR strategies are

brittle — they perform well against their intended opponent, but are not good strategies to use

in general. Against other opponents, even weak ones, they perform poorly. We also note that

some of the strategies in the table (PsOpti6 and PsOpti7, Attack60 and Attack80, Smallbot1239 and

Smallbot1399) are very similar, and yet an FBR strategy that defeats one can still lose to the other,

or not exploit them for nearly as much as is possible.

4.5.2 Comparisons against BRPlayer

In Section 2.6.4 we discussed BRPlayer, another program that can exploit its opponents. BRPlayer

and FBR are difficult to compare, because they are used in very different ways. BRPlayer learns

online with only the information a player receives during a match, while FBR counter-strategies are

calculated offline with the benefit of hundreds of thousands of full information games.

One task in which BRPlayer and FBR can be compared is in finding a lower bound on the

exploitability of an opponent. Before the FBR technique was developed, the highest known ex-

ploitability for PsOpti4 was found using BRPlayer. In Figure 5.7 of Schauenberg’s MSc thesis [27,

p. 70], if we consider the first 400,000 games to be training for BRPlayer and consider only the last

100,000 games, BRPlayer defeats PsOpti4 by 110 millibets/game. In Table 4.4, we calculated an

8-bucket E[HS2] counter-strategy that was able to defeat PsOpti4 by 167 millibets/game. For this

purpose — evaluating new agents that we produce — FBR has taken the place of BRPlayer.

4.6 Conclusion

The Frequentist Best Response technique is an important tool to have available. It allows us to

evaluate our own strategies and those of our opponents, and has restrictions that are not nearly as
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onerous as those imposed by the best response algorithm. FBR is capable of producing strategies

that defeat their opponents, but it is unlikely that such strategies would ever be used by themselves to

play poker. Since the strategies are brittle, we need to be sure that our opponent is the one we trained

the FBR strategy to defeat. Imagine, for example, that we are doing opponent modeling during a

match to find out what strategy to use, and then using an FBR counter-strategy to the suspected

opponent. If our opponent modeling is incorrect, either because of modeling error or the opponent

changes their strategy, then we can pay a heavy price.

Ideally, we would like a method that allows us to construct robust responses: a strategy that can

exploit a particular opponent or class of opponents, while minimizing its own exploitability. This

confers two advantages. If we are using the strategy on its own to play against an opponent, then

we know that if it was trained against this opponent it will win; if it was not trained against this

opponent, it will not lose by very much. If we are using opponent modeling to identify our opponent

and then select an appropriate robust response, we can be confident that we will not pay a large price

if our model is incorrect. An approach for creating these robust responses, called Restricted Nash

Response, will be presented in the next chapter.
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Chapter 5

Playing to Win, Carefully:
Restricted Nash Response

5.1 Introduction

In Chapter 3, we presented Counterfactual Regret Minimization, a method for creating poker agents

that do not try to exploit opponents, and instead try to minimize their own exploitability. We showed

that these agents are robust: against arbitrary opponents, they will be difficult to defeat. In Chap-

ter 4, we presented Frequentist Best Response, a method for creating counter-strategies that exploit

opponents without regard for their own exploitability. We showed that these counter-strategies are

brittle: while they perform well against the specific opponents they are designed to defeat, they can

lose badly to others, even if those opponents are weak or similar to those trained against. We would

like to find a method that is a compromise between these two extremes, so that we can create agents

that exploit a particular opponent or class of opponents, while providing a bound on how much they

can be defeated by.

We will present such a method in this chapter. In Section 5.2, we will provide a high-level

description of the technique, called Restricted Nash Response (RNR). In Section 5.3, we will provide

a more formal description. In Section 5.4, we will present results of RNR agents playing against our

standard benchmark programs. Finally, we will conclude the chapter by motivating our intended use

for these new agents as members of a team of strategies.

5.2 Overview

We will begin with an example that motivates the use of robust counter-strategies. Suppose you

have played against an exploitable opponent some time in the past, and will play against a similar

opponent — perhaps a new, improved version — in the future. If we would like to beat them by

as much as possible, then we could calculate a best response using the Frequentist Best Response

approach of Chapter 4. However, these FBR counter-strategies are brittle. If the new opponent has

been even slightly improved, the FBR counter-strategy could lose by a large margin. In particular,
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the new opponent might display many of the same tendencies as the old one, but sometimes acts so

as to punish an agent trying to exploit it. In other words, it might usually play like the old agent, but

sometimes use a counter-counter-strategy to defeat us. Of all the ways the agent could be slightly

changed, this would be the worst case for us.

The Restricted Nash Response algorithm produces a strategy that is designed to exploit the old

opponent, but it will do so in a robust way. This means that if the new opponent is actually a best

response to the RNR strategy, then the RNR strategy will not be very exploitable.

We will construct these robust counter-strategies by finding an ε-Nash equilibrium in a restricted

game, where the opponent must play according to a fixed strategy with probability p, for our choice

of p. This fixed strategy is analogous to the old, known agent from the example. With probability

1 − p, the opponent is free to play to maximize its utility in the usual game theoretic way. At the

same time, our player is unrestricted and so will want to play a game theoretic strategy that can

both exploit the fixed strategy that the opponent is forced to play, and defend itself from the game

theoretic strategy that the opponent can sometimes adopt.

Since p determines the proportion of the time that player 2 must use the fixed strategy, we can

vary p ∈ [0, 1] to produce a range of strategies for player 1. When p = 0, the algorithm produces an

ε-Nash equilibrium, as the fixed strategy isn’t used and the two game theoretic players are only trying

to exploit each other. When p = 1, the algorithm produces a best response, since the opponent’s

game theoretic strategy isn’t used and all our player has to do is exploit the fixed strategy. At

all points in between, our player is choosing a tradeoff of how much it wants to exploit the fixed

strategy against how much it wants to defend itself from the game theoretic strategy. Another way

of thinking about this tradeoff from our player’s perspective is to consider how confident we are that

the opponent will act like the fixed strategy. If we are very confident, we can exploit it; if we are not

very confident, we can concentrate on defending ourselves.

To get the opponent’s strategy for use in the RNR algorithm, we first create a model of their play

using the Frequentist Best Response technique. This model must be in the same abstraction as the

one we wish to create the RNR counter-strategy in.

The Restricted Nash Response approach can be used with any technique for finding an ε-Nash

equilibrium, including the traditional approach of solving a linear program. However, since the

Counterfactual Regret Minimization approach is our most efficient and effective method for finding

ε-Nash equilibria, we will use that approach to produce RNR agents. In fact, the same program is

used to produce both CFR and RNR strategies, as only a minor modification is required. Recall

that in the CFR approach, we created two agents who then used self-play to learn to defeat each

other, and over millions of games they approached a Nash equilibrium. In the RNR approach, we

construct three agents — one for player 1, and a learning and static component for player 2. During

millions of games of self-play, player 1 tries to minimize its regret against both the learning and

static components of player 2, using p to determine how much weight to put on each part of the
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regret.

When we compute RNR agents, we need to choose a value of p, which determines how much

of the static strategy we force player 2 to use. Since it determines the tradeoff between our ex-

ploitation of the opponent and our own exploitability, one way to set p is to decide how much of

our exploitability we are willing to risk. If we are willing to be 100 millibets/game exploitable, for

example, then we can experimentally find a value of p that will produce a strategy that is at most 100

millibets/game exploitable. In Section 5.4, we will show how the value of p determines the tradeoff

between exploitation and exploitability, as we described above.

In terms of computational complexity, RNR has requirements slightly higher than CFR, but only

by a constant factor. When computing an RNR strategy, we are only forcing one player (the dealer

or the opponent) to play partially by the static strategy. To form an RNR agent for both seats, then,

we need to run the computation twice — once when the dealer plays partially by the fixed strategy,

and once with the opponent. These strategies can be computed independently, so the program either

takes twice as long, or requires twice as many computers. Also, since the RNR variant of CFR must

make six tree traversals instead of four for each training game played, it takes approximately 1.5

times longer to compute one half of an RNR strategy than a CFR strategy. Assuming the strategies

are computed in series, an RNR strategy then requires about 3 times as long to compute as a CFR

strategy. However, given the low memory requirements of CFR, we typically compute these strate-

gies in parallel. The optimizations described in Section 3.4.3, including the parallel variant of CFR,

are also applicable to RNR. Using a 2.4 GHz AMD Opteron, reasonable RNR strategies using the

5-bucket abstraction that are capable of defeating all of our benchmark programs can be produced

in under a day. We estimate that competitive strategies that use larger abstractions with 10 or 12

buckets can be computed in less than a month.

In the next section, we will formally define the foundation of the Restricted Nash Response

technique.

5.3 Formal Definition

We will start our formal definition of the Restricted Nash Response technique by defining a new

class of best response strategies, called ε-safe best responses. McCracken and Bowling [20] defined

ε-safe strategies as the set of strategies Σε-safe that have an expected utility no less than ε less than

the Nash equilibrium value. As we are primarily interested in symmetric games where the value of

the Nash equilibrium is 0, these ε-safe strategies have an exploitability of no more than ε.

We will define the set of ε-safe best responses in a similar way. An ε-safe best response to a

strategy σ2 is a strategy σ1 with at most ε exploitability that has the best utility against σ2. In other

words, the set of best responses to σ2 that are exploitable by at most ε is:
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BRε-safe(σ2) = argmax
σ1∈Σε-safe

u1(σ1, σ2) (5.1)

Next, we will define the set of strategies that our opponent can choose from. Let us call our model

of the opponent’s strategy σfix. We then define Σp,σfix

2 to be the set of opponent strategies that are

restricted to playing according to σfix with p probability. Next, we define the set of restricted best

responses to our strategy σ1 ∈ Σ1 to be:

BRp,σfix(σ1) = argmax
σ2∈Σ

p,σfix
2

u2(σ1, σ2) (5.2)

Thus, a restricted best response to σ1 is the best strategy the restricted opponent can use, in conjunc-

tion with the fixed strategy, against our unrestricted player.

We now define the pair of strategies that the algorithm generates. A (p, σfix) restricted Nash

equilibrium is a pair of strategies (σ∗1 , σ∗2) where σ∗2 ∈ BRp,σfix(σ∗1) and σ∗1 ∈ BR(σ∗2). We call

σ∗1 a p-restricted Nash response to σfix: it is a robust strategy that is capable of exploiting σfix

that also limits its own exploitability.

In [14, Theorem 1], we prove1:

Theorem 6 For all σ2 ∈ Σ2, for all p ∈ (0, 1], if σ1 is a p-RNR to σ2, then there exists an ε such

that σ1 is an ε-safe best response to σ2.

In other words, by selecting p to generate strategies with exploitability ε, the Restricted Nash

Response strategies generated are the best responses to σ2 of any strategies with that exploitability.

If we have a desired level of exploitability that we are willing to tolerate in our counter-strategies,

then we can experimentally vary p to generate best response strategies with at most that level of

exploitability.

5.4 Results

In this section, we show the effectiveness of the Restricted Nash Response technique. We will begin

by exploring settings of p to determine the tradeoff between exploitation and exploitability that our

strategies will use. Then, we will generate an RNR counter-strategy against each of a variety of our

benchmark agents, and form a crosstable similar to the Frequentist Best Response crosstable shown

in Table 4.2.

5.4.1 Choosing p

We begin by demonstrating the tradeoff between exploitability and exploitation. Figure 5.1 shows

this tradeoff versus models of two of our benchmark opponents, PsOpti4 and Attack80. On each

1The proof of this theorem was found by Zinkevich and Bowling
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Figure 5.1: The tradeoff between ε and utility. For each opponent, we varied p ∈ [0, 1] for the RNR.
The labels at each datapoint indicate the value of p used.

graph, the x-axis is exploitability given up by the strategy, while the y-axis is the strategy’s exploita-

tion of the model of the opponent. The labeled data points are the strategies that were generated;

the label indicates the value of p that generated this strategy. Note that while this graph shows the

exploitation of the model and not the opponent itself, the strategies remain very effective against the

actual agents, as will be shown in Table 5.1.

Note that the curves are highly concave. This means that with very low values of p, we can

create strategies that give up a very small amount of exploitability in return for large gains against

their intended opponent. Equivalently, by giving up only a small amount of exploitation of the

opponent, the strategies obtain a drastic reduction in their own exploitability. For example, consider

the difference between p = 1.00 (a best response) and p = 0.99 for PsOpti4 or p = 0.95 for

Attack80.

A simple alternate method for creating robust responses to an opponent would be to play a

mixture between an ε-Nash equilibrium strategy and a best response. On each hand, you could

choose to play the best response counter-strategy with probability p, and the equilibrium strategy

with probability 1 − p. We plotted this strategy for p ∈ [0, 1] on Figure 5.2, the same graph that

was presented in Figure 5.1. The resulting set of mixture strategies would be a straight line between

the p = 0 and p = 1 datapoints. For any level of exploitability between these endpoints, the

RNR strategies indicated by the “RNR” curve perform better than the mixture strategies indicated

by the “Mix” line. Because the RNR counter-strategies are ε-safe best responses (as presented in

Theorem 6), they are the best counter-strategies for some value of ε; thus, they will always perform

better or equal to a mixture with the same ε.

5.4.2 Comparison to benchmark programs

In Table 4.2, we showed a crosstable of the results of Frequentist Best Response agents competing

against a collection of the CPRG’s benchmark agents. In Table 5.1, we present the same experiment,
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Figure 5.2: A graph showing the tradeoff between exploitiveness and exploitability for Restricted
Nash Response agents and a mixture between a best response and an ε-Nash equilibrium. By ran-
domly choosing either a best response or a Nash equilibrium, a mixture strategy can be created
anywhere along the diagonal line titled “Mix”. For any level of exploitability, the RNR counter-
strategies with that exploitability exploit the opponent by a larger amount than a mixture with the
same exploitability.

Opponents
PsOpti4 PsOpti6 Attack60 Attack80 Smallbot1239 Smallbot1399 Smallbot2298 CFR5 Average

RNR-PsOpti4 85 112 39 9 63 61 -1 -23 43
RNR-PsOpti6 26 234 72 34 59 59 1 -28 57

RNR-Attack60 -17 63 582 -22 37 39 -9 -45 78
RNR-Attack80 -7 66 22 293 11 12 0 -29 46

RNR-Smallbot1239 38 130 68 31 111 106 9 -20 59
RNR-Smallbot1399 31 136 66 29 105 112 6 -24 58
RNR-Smallbot2298 21 137 72 30 77 76 31 -11 54

CFR5 36 123 93 41 70 68 17 0 56
Max 85 234 582 293 111 112 31 0

Table 5.1: Results of restriced Nash response (RNR) against a variety of opponent programs in full
Texas Hold’em, with winnings in mb/h for the row player. Results involving PsOpti4 or PsOpti6
used 10 duplicate matches of 10,000 hands and are significant to 20 mb/h. Other results used 10
duplicate matches of 500,000 hands and are significant to 2 mb/h.

performed using Restricted Nash Response agents. Each of the RNR agents plays in a 5-bucket

abstraction, and has had p chosen to produce a strategy that is approximately (and no more than)

100 millibets exploitable in its own abstraction. The agent labeled CFR5 is an ε-Nash equilibrium

produced by the Counterfactual Regret Minimization technique described in Chapter 3, and it plays

in the same abstraction as the RNR agents evaluated here.

From Table 5.1, we note that, similar to the FBR results shown in Table 4.2, the diagonal values

are high — this is where the RNR counter-strategy was used against its intended opponent. These

values are not as high as the FBR values, since the RNR agents have given up some exploitation

in return for a decrease in exploitability. For example, FBR-PsOpti4 defeated PsOpti4 by 137 mil-

libets/game, whereas RNR-PsOpti4 defeated PsOpti4 by 85 millibets/game. For very exploitable

opponents, such as Attack60 and Attack80, the exploitation by the RNR strategies is considerably

reduced.

The portion of the table not on the diagonal, however, is very different from the FBR table.
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We have described the FBR counter-strategies as brittle: while they are very effective against their

intended opponents, they can lose by a large margin against even similar strategies. The RNR

counter-strategies, on the other hand, are robust: they win against nearly every benchmark program

they face. This robustness makes the RNR counter-strategies good candidates for use against an

opponent who we suspect exhibits an exploitable trait. If we are correct, then the agent will perform

well (although not optimally well); if we are incorrect, we know that its exploitability is bounded.

It is also of interest to compare the performance of the RNR agents to that of CFR5, the ε-

Nash equilibrium in the same abstraction. Equilibrium strategies are the traditional safe strategy

to use against arbitrary opponents, because of their worst-case performance guarantees. The RNR

counter-strategies, used against the correct opponent, perform better than CFR5. Although CFR5

often outplays the RNR counter-strategies against the other opponents, it does not do so by a large

margin.

5.5 Conclusion

Restricted Nash Response counter-strategies are robust responses to opponents, unlike traditional

best responses, which tend to be brittle . In this chapter, we have shown that RNR agents can be

computed using the same information as best response agents and in a reasonable amount of time.

RNR agents can be computed to achieve nearly the same exploitative power as best responses, but

with only a fraction of the exploitability. In their normal use, we have used RNR agents to achieve

modest gains in utility against specific opponents, while limiting their worst case performance to

within a chosen boundary.

In Chapter 6, we will consider creating a team of RNR agents, from which we will choose strate-

gies for use against unknown opponents. We will show that an adaptive “coach” can learn which

RNR strategies are able to exploit opponents that they were not trained to defeat ; furthermore, the

team as a whole will be shown to be more effective than one ε-Nash equilibrium agent. This shows

that counter-strategies such as Restricted Nash Responses can play an important role in competitions

where the winner is determined by total earnings against several opponents, and not only by winning

or losing each individual match.
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Chapter 6

Managing a Team of Players:
Experts Approaches

6.1 Introduction

In the previous chapters on Frequentist Best Response (Chapter 4), Counterfactual Regret Mini-

mization (Chapter 3) and Restricted Nash Response (Chapter 5), we have presented techniques for

creating effective poker agents. However, when the time for a competition arrives and we are facing

an unknown opponent, we may not know which of our strategies to use. An ε-Nash equilibrium

strategy is unlikely to lose, but will not win by a large margin. FBR strategies may win a large

amount against the opponents they were trained to defeat, but will lose against other opponents.

RNR strategies may win a large amount or lose a small amount, depending on the similarity of the

opponent to the opponent the strategy was trained against.

One approach is to use the robust agents created by these techniques to form a team, and use

a meta-agent to choose which one to use on each hand. The problem faced by this meta-agent

is the one solved by experts algorithms. We first explored this idea in Section 2.7, where we

presented UCB1. In this chapter, we will explore this method in more detail, and provide the results

of experiments performed using teams of agents.

6.2 Choosing the team of strategies

To construct a team of agents, we first need to consider the types of agents that the team will include.

The UCB1 algorithm is designed to trade off exploration and exploitation. To find the experimental

expected value of using an agent, the allocation strategy must first use the agent to play several

hands.

If we are using agents that are exploitable (such as the brittle FBR agents), then we will pay

a heavy cost each time they are “explored”. However, if the correct FBR counter-strategy to the

opponent is in the team, then the allocation strategy also receives a clear signal when the best agent

is chosen. The high utility of the correct agent should be quite distinct from the low utilities of the
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remaining agents.

If we are using agents that are minimally exploitable (such as the robust RNR agents), then

the cost for exploration is much lower. Whenever a suboptimal agent is selected by the allocation

strategy, we know that the agent cannot be defeated by very much.

We could also add an ε-Nash equilibrium strategy to a team of FBR agents or RNR agents. If

none of the agents are suitable for use against the opponent, then the allocation strategy should

eventually identify the equilibrium agent as the agent with the highest expected value. However, for

the experiments in this chapter, we will consider the use of an equilibrium strategy on its own to be

an alternative approach that we will compare the use of teams to.

6.3 Using DIVAT

As we discussed in Section 2.2, poker has a significant amount of variance; each hand has a standard

deviation of ±6 small bets/game. If we use the number of small bets won or lost as the utility value

input into UCB1 to choose our strategies, then the variance on each agent’s utility will be high and

it will take longer to accurately predict their average utility.

Alternatively, we can use a variant of DIVAT called Showdown DIVAT. The normal DIVAT algo-

rithm requires full information to perform its analysis: it requires information about the opponent’s

cards, even when they fold. Showdown DIVAT is a variant that approximates the true DIVAT score

by observing only the player’s cards and the opponent’s in cases where they are revealed. If the

opponent folds, the number of small bets won or lost is used instead.

Similar to DIVAT, Showdown DIVAT has a variance that is much lower than the money reward

of the game. The disadvantage of Showdown DIVAT is that it is no longer an unbiased estimator. It

is possible that Showdown DIVAT will reward some strategies more than they deserve. However, we

find that the variance reduction achieved through Showdown DIVAT is worth the cost of introducing

bias.

6.4 Results

In this section, we will consider teams of FBR agents and RNR agents, using the UCB1 algorithm

to learn online which agent to use. These two teams, along with an ε-Nash equilibrium agent, will

compete against several opponents. Some of these (the training set), will be used as opponents for

which we will create FBR and RNR strategies. Others (the holdout set) will not have correspond-

ing FBR or RNR counter-strategies. Our experiments will show the effectiveness of these experts

algorithms when confronted with opponents for which they do have effective agents, and when they

do not.

Figure 6.1 shows the results of one such experiment. PsOpti4, Smallbot1399, Smallbot2298,

and Attack80 were the four strategies that made up the training set, and Bluffbot and Monash-BPP
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Figure 6.1: Performance of FBR-experts, RNR-experts, and an ε-Nash equilibrium strategy (CFR5)
against “training” opponents and “hold out” opponents in 50 duplicate matches of 1000 hands.

formed the holdout set. This arrangement was not chosen arbitrarily. The four members of the

training set are the strongest strategies from each of the four “families” of poker agents the CPRG

has produced. Since they were developed internally and we have the actual strategies, it is simple

to collect the data necessary to make FBR models based on them. The two members of the holdout

set were competitors in the 2006 AAAI Computer Poker Competition, and are particularly useful in

that they are unrelated to the poker strategies we have developed: we have no prior reason to believe

that counter-strategies to our agents should work well against them1.

Starting with the FBR team, we find that the FBR team can perform poorly even against the

training set, where one of the strategies in the FBR team is a strong counter-strategy to the oppo-

nent. Although UCB1 can find the correct strategy eventually, the heavy exploration cost paid for

trying the other three strategies has a costly impact on the team. Against three of the four training

opponents, this cost of exploration causes the FBR team to perform very poorly. The one exception

is Attack80, which is exploitable for more than 1000 millibets/game, as we learned in Table 4.2.

Because of this one result, the FBR team performs better on average than the RNR team or CFR5

against the training opponents. Against the holdout opponents, the FBR team performs by far the

worst of the three approaches, although it does still win against Bluffbot and Monash-BPP.

The RNR team’s results are more promising. Against PsOpti4, Smallbot1399 and Smallbot2298,

the RNR team performs approximately as well as CFR5. Against Attack80, UCB1 is able to learn to

use the correct RNR counter-strategy to Attack80, resulting in a significantly higher score than CFR5

is able to obtain. On average, due to this one win, the RNR team places in between FBR and CFR5.

Against the holdout opponents, however, the RNR team performs the best of the three approaches.

Against both Bluffbot and Monash-BPP, UCB1 is able to find an RNR counter-strategy that performs

well, even though the RNR strategies were not designed to defeat these opponents. This experiment

1There were two other competitors in the 2006 AAAI Computer Poker Competition, and they were not used in this
experiment. The third place competitor in the series competition, GS2, is currently not available on the competition’s bench-
mark server, and so we have no way of evaluating our performance against it. The fourth place competitor in the bankroll
competition, Teddy, is a trivial agent that always raises. We did not consider it interesting for use in this experiment.

75



suggests two hypotheses. First, that the flaws being exploited by the RNR strategies are more general

than the flaws being exploited by the FBR strategies, since the RNR strategies were more successful

against new opponents. Second, that RNR agents acting as a team can sometimes perform better

than an ε-Nash equilibrium strategy, motivating their use in tournaments where overall winnings is

used to select a winner.

6.5 Conclusion

Exploitation is important in poker. Against new opponents, an ε-Nash equilibrium strategy may be a

safe strategy, since it is unlikely to be defeated by a large margin, if at all. Restricted Nash Response

strategies are able to exploit particular opponents, and when used as members of a team, it may be

possible to find a member of that team that can outperform an ε-Nash equilibrium strategy against a

new opponent.

In a tournament such as the Limit Bankroll event of the AAAI Computer Poker Competition, the

winner is selected on the basis of total earnings, and not on the ability to defeat every opponent. In

the next chapter, we will present the results of the 2007 AAAI Computer Poker Competition and the

First Man-Machine Poker Championship. Although a team of Restricted Nash Response strategies

was not used in the Limit Bankroll event, we will show that the CFR ε-Nash equilibrium strategy

that was entered suffered from this lack of exploitive power.
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Chapter 7

Competition Results

7.1 Introduction

The poker agents described in this thesis competed in two poker competitions this year, both pre-

sented at the Association for the Advancement of Artificial Intelligence (AAAI) 2007 Conference,

held in Vancouver, Canada. These competitions were the 2007 AAAI Computer Poker Competition

and the First Man-Machine Poker Championship.

7.2 The 2007 AAAI Computer Poker Competition

This year’s event was the second annual Computer Poker Competition, in which teams submit au-

tonomous agents to play Limit and No-Limit Heads-Up Texas Hold’em. This year, 15 competitors

from 7 countries submitted 43 agents to three different tournaments. This is the world’s only public

annual competition for poker programs; the agents in the competition are the strongest known pro-

grams in the world. The Computer Poker Competition consisted of three Heads-Up Texas Hold’em

tournaments: Limit Equilibrium, Limit Online Learning, and No-Limit.

7.2.1 Heads-Up Limit Equilibrium

Since finding an ε-Nash equilibrium strategy is an interesting challenge in its own right, one of the

tournaments is designed to determine which player is closest to the Nash equilibrium in the real

game. In this competition, every pair of competitors plays a series of several duplicate matches, and

the winner of the series receives one point. The players are then ranked by their total number of

points. By using this format, we are rewarding players for not losing : it does not matter how much

they win by, it only matters that they win.

In this competition, the CPRG entered an agent called Hyperborean07EQ. It is an ε-Nash equi-

librium strategy that plays in a 10-bucket nested abstraction (5 E[HS2] sets, each split into 2 E[HS]

buckets), and it is 2.27 mb/game exploitable in its own abstraction. This strategy was created using

the Counterfactual Regret Minimization technique by using four CPUs over 14 days.
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The results of the Limit Equilibrium competition are presented in Table 7.1. Hyperborean07EQ

took first place in this competition. It did not lose a series of matches against any of its competitors,

and had the highest average win rate of any competitor.

7.2.2 Heads-Up Limit Online

In the Heads-Up Limit Online tournament, players are rewarded for exploiting their opponents.

Every pair of competitors plays a series of several duplicate matches. The players are then ordered

by their total winnings over all of their matches. The bottom 1/3 of competitors is eliminated to

remove extremely exploitable players, and then rank the remaining 2/3 of the players by their total

winnings against the other remaining competitors.

In this competition, the CPRG entered two agents. The first agent was called Hyperborean07OL.

It is an ε-Nash equilibrium strategy that plays in a 10-bucket non-nested abstraction (10 [E[HS2]

buckets). It is 4.33 mb/g exploitable in its own abstraction. Hyperborean07OL was created by the

Counterfactual Regret Minimization technique, using 4 CPUs over 14 days. The other CPRG entry

was called Hyperborean07OL-2. It was created by a separate branch of research pursued by Billings

and Kan. They describe it as a “quasi-equilibrium” that is better able to exploit weak opponents than

regular ε-Nash equilibria strategies.

The full results of the Limit Online competition are presented in Table 7.2. As described

above, the bottom 1/3 is removed, resulting in the crosstable shown in Table 7.3. The competi-

tors are ranked according to their winnings in this second, smaller table. The two CPRG entries,

Hyperborean07OL-2 and Hyperborean07OL took first and second place respectively, with a statis-

tically insignificant margin between them.

There is an interesting result in this, however. The first place agent, Hyperborean07OL-2, lost to

the next 3 top ranked agents, and was able to win enough from the remaining opponents to still take

first place. The second place agent, Hyperborean07OL, did not lose to any opponent, but only won

enough from all opponents on average to narrowly miss first place. This result emphasizes one of the

features of poker that make it an interesting game: exploitation is important. In this match, we have

shown that an agent can lose to several opponents but still win overall, if it is better at exploiting

the weak players. A team of several RNR counter-strategies and Hyperborean07OL, as described in

Chapter 6, we may have performed better than either Hyperborean07OL or Hyperborean07OL-2.

7.2.3 No-Limit

In the No-Limit tournament, players are rewarded for exploiting the strongest opponents. Every pair

of competitors plays a series of several duplicate matches. The players are then ordered by their

total winnings over all of their matches. To find the winner, we repeatedly eliminate the player with
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the lowest total winnings against players that have not yet been eliminated.

Before this competition, the CPRG had never created a No-Limit agent. The agent we entered

was called Hyperborean07, and it uses another ε-Nash equilibrium strategy made by the Counter-

factual Regret Minimization technique. It plays in an 8-bucket abstraction (8 E[HS2] buckets), and

considers only four actions — fold, call, pot-raise, and all-in. A pot-raise is a raise of a size equal to

the current size of the pot.

The results of the No-Limit competition are presented in Table 7.4. The CPRG entry, Hyper-

borean07, took third place, losing to BluffBot20NoLimit1 and GS3NoLimit1. Of these top three

agents, Hyperborean obtained the highest average score, but was defeated by the top two agents.

Once again, we found an interesting pattern in the results. The players SlideRule, Gomel, and

Gomel-2 were able to exploit their opponents to a much larger degree than the other competitors.

Even though they lost several of their matches, their large wins against the weaker opponents such

as PokeMinn and Manitoba-2 meant that their average performance was higher than the top three.

This competition was designed to reward consistent play, but under a different winner determi-

nation rule, the ranking could have been very different, putting Gomel or SlideRule into first place.

7.2.4 Summary

In the AAAI 2007 Computer Poker Competition, the agents fielded by the CPRG competed against

the world’s best artificial poker agents and made a strong showing. In the Limit events that have

been our focus since as early as 2003, we took first place twice and second once. One first place

and the second place finish went to poker agents created through the techniques described in this

thesis. This strong showing provides an experimental basis for our claims as to the applicability and

usefulness of these techniques.

The introduction of the No-Limit event and our third-place finish in it affirm that No-Limit is a

significantly different style of game than Limit. While our approaches towards finding equilibria and

computing counter-strategies are still valid in this game, we believe there are great improvements in

performance that can be realized by changing the abstract game in which we compute our strategies.

In Section 8.1, we will present our current ideas for future directions that this research can take in

order to accommodate the new challenges presented by No-Limit Heads-Up Texas Hold’em.

7.3 The First Man-Machine Poker Competition

The second competition at AAAI was the First Man-Machine Poker Championship, an exhibition

match between several of the CPRG’s poker agents and two world-class human poker experts, Phil

Laak and Ali Eslami. Laak has a degree in Mechanical Engineering and was a competitive backgam-

mon player before turning to poker. Eslami was a computer consultant before discovering his poker

talents, and has a strong technical background. These two competitors are not only strong poker

players, but technically minded opponents that are familiar with our research.
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In order to get statistically significant results, we decided to use duplicate matches for the event.

Since humans cannot have their memories erased between matches, this meant that we needed two

human experts that would act as a team. In each match, either Laak or Eslami would play against

one of our poker agents in the event’s main venue. At the same time, in a separate room, the other

human player would play against one of our poker agents, with the cards reversed. The two humans

usually played against the same poker agent.

Over two days, four duplicate 500 game matches were held, making a total of 4000 hands. After

each 500 hand match, the two humans and two computer agents would combine their scores. If the

higher scoring team was ahead by more than 25 small bets, then they were declared the winner; any

result that was±25 small bets was declared a statistical tie. For their efforts, the human players were

each given $5000, plus $2500 each for each match they won, or $1250 each for each match they tied.

For the purposes of this match, our set of poker agents was called Polaris, and each agent was given

a color-coded nickname — Mr. Pink, Mr. Orange, and so on. Photographs and a hand-by-hand blog

of the event are available online at www.manmachinepoker.com.

We will now describe each match and present the results from it, along with a DIVAT post-match

analysis.

7.3.1 Session 1: Monday July 23rd, Noon

In Session 1, the CPRG team used an ε-Nash equilibrium nicknamed “Mr. Pink” to play against

Laak and Eslami. In this session, Eslami was on stage in the main room, and provided commentary

about the match to the crowd as the game progressed. Meanwhile, Laak was sequestered in a hotel

room with two CPRG members. Figure 7.1 shows the progress of the matches that Laak and Eslami

were playing. On each graph, both the Bankroll line (number of bets won) and the DIVAT line (an

unbiased estimator of the Bankroll, but with less variance) is shown.

Our agent, Mr. Pink, is the largest and strongest CFR ε-Nash equilibrium strategy that we have

created to date, and the largest known equilibrium strategy for Texas Hold’em. It plays in a nested

abstraction with 6 E[HS2] sets each split into 2 E[HS] buckets, for a total of 12 buckets on each

round. We chose to enter an equilibrium strategy as a baseline for comparison against the agents we

would use in future matches. Since an ε-Nash equilibrium strategy is virtually unbeatable within its

own abstraction, observing the performance of the human experts against the equilibrium strategy

would give us information about the accuracy of the abstractions we use.

We believe it was a significant factor that, in this session, the human experts did not know the

nature of the opponent they were facing. At several times during the match, Eslami described his

strategy to the audience, and wondered whether or not he was facing a learning opponent that could

adapt to his play, or an equilibrium strategy that would not attempt to exploit him if he played

sub-optimally. We saw that the “threat” of learning can in itself be a valuable tool.

Session 1 ended as a statistical tie. At the end of the match, Polaris was ahead by 7 small bets;
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Figure 7.1: Bankroll and DIVAT graphs for Session 1. This session was a statistical tie: the match
ended with Polaris ahead by 7 small bets. According to DIVAT analysis, Polaris was expected to
win by 5 small bets.

this is within the ±25 small bet range where a tie is declared.

7.3.2 Session 2: Monday July 23rd, 6pm

In Session 2, the CPRG team used a new, experimental agent developed by the author, nicknamed

“Mr. Orange”. In this session, Eslami was sequestered in the hotel room and Laak was on stage,

providing commentary. The bankroll and DIVAT graphs from this duplicate match is shown in

Figure 7.2. Once again, in this match, the human players did not know the nature of the opponent

they were facing. They only knew the name (Mr. Orange), and that it was a different agent than they

had faced in the first match.

Mr. Orange was created by a method developed by the author which was not discussed in this

thesis, due to its experimental nature; nonetheless, it proved to be very effective in this match, and

so we will briefly describe it here. Billings, the CPRG’s resident poker expert, has often criticized

ε-Nash equilibrium agents for not being aggressive enough. In response, Mr. Orange was developed

to be an aggressive player which is also close to a Nash equilibrium. In poker, an “aggressive”

player is one who bets more often and presses harder to win the pot, even in marginal cases where

the expected value of such actions may be slightly negative. An aggressive strategy confers several

benefits:

• Punishes suboptimal play. When playing against an equilibrium strategy, players are usually

at liberty to act suboptimally if it allows them to find weaknesses in the strategy. Since the

strategy does not attempt to exploit this weakness, the player pays a small price for such

actions. Against an aggressive player who increases the size of the pot, the cost of these

“probing” actions is increased.

• Provides more opportunities for opponent error. By playing more aggressively, the agent

forces the human players to make more decisions on each hand, and each game takes longer to
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play. Furthermore, the outcome of each hand is more significant, as a larger pot can become a

larger win or a larger loss. Every time the human player takes an action, there is the potential

that they will make a mistake: perhaps they will form an incorrect model of the agent and

fold a winning hand, or raise when they do not have the correct odds to do so, or will simply

become more fatigued. As computer agents never get tired, the longer games are only a

penalty to the human players.

• Aggression is not an expensive mistake. Of the types of suboptimal play an agent can exhibit

— too much or too little aggression, folding too many or too few hands, bluffing too often or

not often enough — being over or under aggressive is the least costly. Laak and Eslami

claimed Mr. Orange was too aggressive, and yet it is only 35 millibets/game suboptimal in its

own abstraction. Humans perceive this aggression as a larger weakness than it actually is.

To create an aggressive agent, we used the Counterfactual Regret Minimization technique from

Chapter 3, but with one change. On every terminal node of the game tree, we gave a 7% bonus in

utility to the winning player, while the losing player did not pay any extra cost. This means that the

game is no longer zero sum, as more money is being introduced on each hand. The important benefit

of this approach is that the agent always thinks it has better odds than it actually does — it is more

willing to fight for marginal pots. For every $1 it invests in a bet, it thinks it will receive $1.07 in

return even if the opponent immediately folds, and $2.14 if the opponent calls the bet and the agent

wins the showdown. This extra return on investment encourages it to bet in more situations where it

might otherwise call or fold. However, since it learns its strategy by playing against an agent trying

to exploit it, it learns to express this extra aggression in a balanced way that still effectively hides

information.

This agent proved to be very effective against Eslami and Laak. It won Session 2 by a 92.5 small

bet margin, a result far beyond the 25 small bet boundary for a tie. The cards dealt to the players

in this game were very unbalanced; Laak and the Polaris agent opposing Eslami were consistently

dealt stronger cards than their opponents. Although Laak won his side of the match by 157 small

bets, Polaris was able to use the same cards to beat Eslami by 249.5 small bets.

After the session had ended, the players described the style of play of Mr. Pink and Mr. Orange,

the two poker agents they had faced that day. They said that Mr. Pink played like a calm old man.

According to Laak, Mr. Orange “...was like a crazed, cocaine-driven maniac with an ax” [8]. They

also suggested what they thought would be a strong combination: a team comprised of Mr. Pink and

a slightly less aggressive Mr. Orange. Against this opponent, they said, they would not be able to

know if bets were being made because of Mr. Orange’s aggression, or because of a strong hand held

by Mr. Pink. This corresponds with a conclusion we reached in Section 7.3.1: just the threat of an

adaptive opponent can cause the team to perform better than any of its components.
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Figure 7.2: Bankroll and DIVAT graphs for Session 2. This session was a win for Polaris: the match
ended with Polaris ahead by 92.5 small bets. According to DIVAT analysis, Polaris was expected to
win by 126 small bets.

7.3.3 Session 3: Tuesday July 24th, Noon

In Session 3, the CPRG fielded different teams of agents against Laak and Eslami. Using the results

of the previous day’s matches, we used importance sampling to identify 3 out of 10 possible agents

that were most likely to perform well against Laak and Eslami. We used UCB1 as the meta-agent

to choose between these three agents during the match. The results of this match are presented in

Figure 7.3. In this match, the human players were told that they were competing against a team of

agents that would adapt to their play, and were told if “Mr. Pink” or “Mr. Orange” were members

of the team.

In this match, an ε-Nash equilibria agent and two Restricted Nash Response agents were used

against Laak, while Eslami once again played against a team of Mr. Pink, another ε-Nash equilibria

and Mr. Orange, the aggressive agent from session 2. Due to a bug in our program that manages the

team, learning only occurred on hands that ended in a showdown, and this is also the only time that

the agent in control was changed. If either player folded for several games in a row, a suboptimal

agent could be left in control for far longer than was intended. Fortunately, since all of the agents

used give guarantees on their worst case performance, the agents did not suffer as much as they

could have from this flaw.

Laak in particular was happy with his performance in this match. While Eslami lost 63.5 small

bets to the combined strength of Mr. Pink and Mr. Orange, Laak ended the match up 145.5 small

bets, causing Polaris’ first loss — it ended the session trailing by 82 small bets.

7.3.4 Session 4: Tuesday July 24th, 6pm

In the final session, Eslami was on stage and Laak was sequestered in the hotel room. Now that

the match was tied overall with a tie and one win for each team, the CPRG decided to use a low-

variance style of play to attempt to close out a tie or perhaps earn a win. The DIVAT analysis
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Figure 7.3: Bankroll and DIVAT graphs for Session 3. This session was a win for Laak and Eslami:
the match ended with Polaris behind by 82 small bets. According to DIVAT analysis, Polaris was
expected to win by 83 small bets.

from Session 1 had shown that in the long run, Mr. Pink was expected to tie that match. This

confidence in Mr. Pink, along with a fear that Mr. Orange’s aggressive style might increase variance

and increase the chances of a loss, made the group decide to field Mr. Pink alone for this session.

We briefly considered entering Mr. Pink and Mr. Orange as a team, but (as described in Session

3’s description), there was a bug in the program that managed the team, and it was not yet fixed.

We entered Mr. Pink alone rather than risk encountering new unforeseen problems with the team

program. In retrospect, even with the bug in the team management code, using Mr. Pink and Mr.

Orange together would have caused uncertainty and the “threat of learning” that we have mentioned

previously, and the humans might have performed worse as a result.

Part of the agreement with the human players was that we would tell them a nickname for each

opponent, although we were not required to tell them the nature of that opponent. This meant that

the players knew from the start that their opponent was not a learning agent, and that it was the same

Mr. Pink that they had encountered on Session 1.

The results of Session 4 are presented in Figure 7.4. In a match where the CPRG’s poker experts

were repeatedly impressed by the human players’ performance, Laak and Eslami both finished their

sides of the match ahead by 11 and 46 small bets respectively, causing Polaris’ second loss of the

day, down by 57 small bets.

7.3.5 Man-Machine Match Conclusions

When observing the bankroll and DIVAT graphs for each match the reader may notice that, according

to the DIVAT scores, Polaris was expected to tie the first match and win the next three matches by

more than the 25 small bet boundary for tying the game. It is important to note that although DIVAT

reduces variance, it is not free from it. According to the rules of the competition, there is no doubt

that the humans won the championship. Throughout each match, we were consistently amazed by
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Figure 7.4: Bankroll and DIVAT graphs for Session 4. This session was a win for Laak and Eslami:
the match ended with Polaris behind by 57 small bets. According to DIVAT analysis, Polaris was
expected to win by 57 small bets.

their insight into the game, the quality of their play, and their ability to occasionally name the exact

cards that Polaris was holding. On the other hand, the post-match DIVAT analysis suggests that the

human team’s performance may still have had a strong luck factor. If additional games were played,

DIVAT suggests that the outcome may have been different.

One conclusion to be drawn from the match and the DIVAT scores, however, is that duplicate

matches alone are not enough for reducing the variance of these short games. Part of the reason for

this is that human players do not all play by the same style. Eslami describes himself as an aggressive

player, and he describes Laak as a cautious and trapping player. Because of their different styles,

these players are willing to play different hands in different ways; the variance reduction gained

from duplicate matches is most effective in computer-vs-computer matches, where a player uses the

same strategy on both sides of the duplicate match. In a future Man-Machine Championship, we

should investigate ways to further reduce variance, such as longer matches, playing more than two

matches at once (4 humans and 4 computers, for example), or the official use of a tool similar to

DIVAT to determine the winner, as opposed to using the noisy bankroll line.

We can also conclude from these matches that our poker agents are quickly approaching world

champion levels of play in this game. Eslami and Laak’s post game comments were perhaps more

telling than any graph in this regard. Eslami was quick to exclaim that the end result was not a win

for the human players — he said he had played the best poker of his life, and they just barely won.

Across all four matches, the total score for the humans was 39.5 small bets won over 4000 games,

or 10 millibets/game. This was a narrower margin of victory than any of the 1st Place vs 2nd Place

results from the 2007 AAAI Computer Poker Competition events.

We conclude this section with the observation that the techniques described in this thesis can

produce poker agents that become stronger by the hour, while the quality of human professional

play is unlikely to improve significantly over the coming year. If there is a Second Man-Machine
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Poker Championship, the computer team will be able to field agents that are stronger than any of the

agents used in this competition, and they may be ready to challenge the world’s very best masters at

this particular variant of poker.
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Chapter 8

Conclusion

In this thesis, we have presented three new techniques for creating strong poker agents, as well as

showing how they can be combined into a team. These techniques are:

• Counterfactual Regret Minimization: a new method for finding ε-Nash equilibria strategies

in very large stochastic, imperfect information games. It has more favorable memory bounds

than traditional approaches, allowing for the calculation of ε-Nash equilibria strategies in

larger abstractions that are closer to the real game.

• Frequentist Best Response: a variant on the standard best response algorithm that has fewer

restrictions. It can calculate a “good response” based on observed hands, and can generate

counter-strategies in a chosen abstract game.

• Restricted Nash Response: an approach that creates a new type of strategy. This approach

creates strategies that are a compromise between best responses and Nash equilibria. The

strategies are trained to defeat a particular opponent or class of opponents, but can be tuned

with a parameter to determine how much emphasis to put on exploiting that opponent as

compared to minimizing its own exploitability.

• UCB1 Teams of Strategies: an application of the UCB1 experts algorithm to the poker do-

main. By using teams of Restricted Nash Response strategies, we are able to defeat unseen

opponents by a larger margin than an equilibrium strategy.

Each of these techniques has been an improvement over existing technologies, or has created a new

niche which did not previously exist.

8.1 Future Work

After the First Man-Machine Championship, the CPRG discussed future directions of this work

amongst ourselves and with Phil Laak and Ali Eslami, the two poker experts who we competed

against. We have highlighted a range of exciting new ideas resulting from this work that will be

pursued over the coming months and years:
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8.1.1 Improved Parallelization

The current method of parallelizing the Counterfactual Regret Minimization and Restricted Nash

Response code is necessary but crude. In each program, eight computers are used, and each controls

a different part of the search tree. This is done for two reasons. The first reason is to make use of

the memory of eight computers instead of one; the game tree for the 12-bucket abstraction alone

required 16.5 gigabytes of memory, and more overhead was required to store the details of the

abstraction. The computers available to us each had 8 gigabytes of memory; the parallelization

succeeded in evenly dividing the memory use over the 8 computers. The second reason was to

create opportunities for parallel traversal of the game tree fragments. By using 8 CPUs instead of

one, we were able to achieve a 3.5x speedup. However, some lines of play are visited much less

frequently than others, and the parallelization had poor load balancing. Some CPUs (notably the

ones handling the check-call, check-bet-call, and bet-call sequences) were bottlenecks.

This parallelization can be extended in two ways. First, there are still gains to be had from

spreading the program over more computers. By using 21 computers or more, we can make use of

more distributed memory and solve even larger abstractions. Second, the parallelization can employ

better load balancing by spreading the work more evenly over the available computers, so as to

increase efficiency.

8.1.2 No Limit Texas Hold’em

Using the Counterfactual Regret Minimization technique described in Chapter 3, we produced an

agent that competed in the 2007 AAAI Computer Poker Competition’s No-Limit event. As we

reported in Chapter 7, it placed third out of ten agents — a respectable showing, but with room for

improvement. There are two significant avenues for improvement. First, the abstraction allowed

only betting actions that matched the size of the pot or bet the agent’s entire stack. By considering

finer-grained betting actions, we should be able to improve the performance of the program at the

cost of increased time and space requirements. Second, the card abstraction we used was designed

for Limit Texas Hold’em, and it may not be suitable for No-Limit.

In Limit Hold’em, the bets on the first two rounds are smaller than on the last two rounds. This

means that the agents get to observe 3 buckets before they have to make “expensive” decisions; as

the abstraction provided 8 history buckets on each round, that meant the agent knew it was in one of

512 buckets before making such a decision.

In No-Limit Hold’em, an agent may be required to make a decision involving all of their money

(the most expensive type of decision possible!) on the very first round, where they are in one of only

8 buckets. An alternate abstraction may shift more buckets from the later rounds to earlier rounds,

so that agents can receive more precise information right from the start.
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8.1.3 Dynamic Opponent Modeling

In Chapter 6, we considered an approach using several agents working as a team to defeat an oppo-

nent. However, this approach assumes that the opponent is stationary, as the historical performance

of the agents is used to choose the agent to play the next hand.

A technique that has enjoyed recent success in simpler poker games, such as Kuhn poker [2],

performs dynamic opponent modeling. This approach considers not only the strategy employed by

the opponent, but ways in which they are changing their strategy over time: do they slowly drift

from one part of the strategy space to another, or do they suddenly “change gears” and adopt a new

strategy that might defeat the strategy we are currently using?

If a set of strategies can be developed that covers a large “interesting” part of the strategy space,

we can try to learn what strategies the opponent is most likely to be using, and how they are changing

their play over time. Then, we can employ counter-strategies such as Restricted Nash Responses

to defeat them, while retaining the assurance that our counter-strategies will be robust if we have

misjudged their movement.

8.1.4 Imperfect Recall Abstractions

The new ε-Nash equilibrium finding methods described in Chapter 3 allowed us to solve larger

games than were previously possible, but we were soon solving games large enough that we used all

of our available memory. We then developed the parallel version of the code to gain access to more

memory by using eight computers, and we promptly used all of the distributed memory, as well.

A new approach to solving large games while decreasing our memory use may be to solve

imperfect recall games. In the abstractions we have previously discussed, the agents have retained

perfect recall: they choose their actions based on the entire history of the game. Instead, we can

create imperfect recall abstractions, where agents “forget” what buckets or actions they observed

on rounds previous to this one, and must make their actions based on only some of the history. By

“forgetting” unimportant information, we are able to reduce the size of the abstraction. This has

an advantage in that we may be able to create strategies in abstract games that have thousands of

buckets on each round, instead of our current system of 12 Preflop buckets, 144 Flop buckets, and

so on. This approach may be the key to creating strong No-Limit strategies.

8.1.5 Equilibrium Strategies in Perturbed Abstractions

During the second match of the First Man-Machine Poker Championship, we used a highly exper-

imental poker agent that plays a very aggressive style of poker. It won the second match, and was

also highly praised by the human experts.

This agent was made more aggressive by “perturbing” the abstraction. Each terminal node in the

game tree was modified such that it gave a 7% utility bonus to the winner, while the loser did not pay

an extra fee. When we found an ε-Nash equilibrium strategy in this new, non-zero sum game, we
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found that it was much more aggressive, while still having a low exploitability in the un-perturbed

abstract game.

There are several different ways in which we can perturb an abstraction to create a variety of

strategies with different characteristics: more aggressive, more passive, tighter (folds more hands),

looser (plays more hands), and so on. Each of these strategies is interesting in that it is another style

of play that an opponent might be weak against.

Although the strategy generated by this approach performed very well in the competition, it has

not yet been examined in detail. After research is performed to ensure the validity of the approach,

this ability to form a variety of playing styles may become very useful.

8.1.6 Improved Abstractions

The E[HS2] metric as described in Section 2.5.5 is useful, but can certainly be improved upon.

Instead of bucketing hands based only upon E[HS2] and E[HS], we would like to find methods

that provide a clearer separation between potential hands and normal hands. We would also like

to consider hands with negative potential — a hand that is strong, but can become much weaker if

certain cards are dealt. There is also a great deal of public information that the current bucketing

scheme does not capture. For example, if four cards of the same suit are present on the board, there

is a moderate probability that our opponent has a flush. Human players are aware of the “texture” of

the board — the features of the board cards that indicate that the opponent may have a high potential

hand. By designing our buckets to incorporate this public information, we may be able to create

abstractions that are even closer to the real game.

8.2 Concluding Remarks

In this thesis, we have presented three new techniques for creating poker strategies and counter

strategies, and shown how to combine them into a team. The Counterfactual Regret Minimization

and Restricted Nash Response agents are of particular interest because they are robust: against

any opponent, they are unlikely to be defeated by a large margin. Although the Frequentist Best

Response strategies are too brittle to be used in a competition, the technique is still very useful for

determining an agent’s worst case exploitability and for obtaining models for the Restricted Nash

Response technique. The value of these techniques was shown by using the agents to compete

in an international competition for computer poker programs and to compete against two human

professional poker players.

Poker is a challenging and popular example of the domain of stochastic, imperfect information

games. Research into deterministic, perfect information games such as chess and checkers has

resulted in advances in areas such as heuristic search that have found applicability in other areas of

computing science. We feel that research into stochastic, imperfect information games such as poker
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will reveal additional applications beyond the games domain, particularly because agents acting in

the real world often have to deal with both stochasticity and imperfect information.

Since the AAAI Computer Poker Competition has become an annual event and is entered by

teams of academics, research into computer poker promises to be an exciting and fruitful field in the

coming years.
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